2024-2025学年河南省郑州市郑州外国语数学九上开学经典模拟试题【含答案】
展开
这是一份2024-2025学年河南省郑州市郑州外国语数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将一次函数图像向下平移个单位,与双曲线交于点A,与轴交于点B,则=( )
A.B.C.D.
2、(4分)如图,平行四边形的周长为40,的周长比的周长多10,则为( )
A.5B.20C.10D.15
3、(4分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A.B.C.D.
4、(4分)如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交菱形对角线BO于点D,DE⊥x轴于点E,则CE长为( )
A.1B.C.2﹣D.﹣1
5、(4分)下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是( )
A.3B.4C.7D.10
6、(4分)如图是可以自由转动的转盘,转盘被等分成三个扇形,并分别标上1,2,3,转盘停止后,则指针指向的数字为偶数的概率是( )
A.B.C.D.
7、(4分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是( )
A.y1>y2B.y1<y2C.y1=y2D.不能确定
8、(4分)下列计算正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
10、(4分)已知x1,x2,x3的平均数=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.
11、(4分)在正方形中,点在边上,点在线段上,且则_______度,四边形的面积_________.
12、(4分)a与5的和的3倍用代数式表示是________.
13、(4分)如图,在中,,,,点为的中点,在边上取点,使.绕点旋转,得到(点、分别与点、对应),当时,则___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
15、(8分)某商场计划购进A、B两种新型节能台灯,已知B型节能台灯每盏进价比A型的多40元,且用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同.
(1)求每盏A型节能台灯的进价是多少元?
(2)商场将购进A、B两型节能台灯100盏进行销售,A型节能台灯每盏的售价为90元,B型节能台灯每盏的售价为140元,且B型节能台灯的进货数量不超过A型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?
16、(8分)已知一次函数的图象如图所示,
(1)求的值;
(2)在同一坐标系内画出函数的图象;
(3)利用(2)中你所面的图象,写出时,的取值范围.
17、(10分)在图中网格上按要求画出图形,并回答问题:
(1)如果将三角形平移,使得点平移到图中点位置,点、点的对应点分别为点、点,请画出三角形;
(2)画出三角形关于点成中心对称的三角形.
(3)三角形与三角形______(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点.
18、(10分)如图,点D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简二次根式的结果是______.
20、(4分)将代入反比例函数中,所得函数值记为,又将代入函数中,所得函数值记为,再将代入函数中,所得函数值记为,如此继续下去,则________.
21、(4分)分解因式:ab﹣b2=_____.
22、(4分)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,则下列四个结论:①c>0; ②2a+b=0; ③b2-4ac>0; ④a-b+c>0;正确的是_____.
23、(4分)若分式值为0,则的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,5),B(﹣2,1),C(﹣1,1).
(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标,并画出△A1B1C1;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(1)将△ABC绕着点O按顺时针方向旋转90°得到△A1B1C1,写出△A1B1C1的各顶点的坐标,并画出△A1B1C1.
25、(10分)(1)解不等式组
(2)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值。
26、(12分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:先求得一次函数图像向下平移个单位得到的函数关系式,即可求的点A、B的坐标,从而可以求得结果.
解:将一次函数图像向下平移个单位得到
当时,,即点A的坐标为(,0),则
由得
所以
故选B.
考点:函数综合题
点评:函数综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
2、A
【解析】
由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,结合平行四边形的周长,即可得解.
【详解】
在平行四边形ABCD中,
AO=OC,AB=CD,AD=BC,
∵△AOB的周长比△BOC的周长少10cm,
∴BC+OB+OC-(AB+OB+OA)=10cm,
∴BC-AB=10cm,
∵平行四边形ABCD的周长是40cm,
∴AB+BC+CD+AD=40cm,
∴BC+AB=20cm,
∴AB=5cm.
故选A.
本题考查平行四边形的性质,比较简单,关键是利用平行四边形的性质解题:平行四边形的对角线互相平分.
3、B
【解析】
△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【详解】
解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是B;
故选B.
本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
4、C
【解析】
由菱形ABCO,∠AOC=60°,由解直角三角形可以设A(m,m),又点A在反比例函数的图像上,带入可以求出A的坐标,进而可以求出OA的长度,即OC可求.再根据菱形ABCO,∠AOC=60°,可知∠BOC=30°,可设E(n,0),则D(n,n),带入反比例函数的解析式可以求出E点坐标,于是CE=OC-OE,可求.
【详解】
解:∵四边形ABCO为菱形,∠AOC=60°,
∴可设A(m,m),
又∵A点在反比例函数y=上,
∴m2=2,得m=(由题意舍m=-),
∴A(,),OA=2,
∴OC=OA=2,
又∵四边形ABCO为菱形,∠AOC=60°,OB为四边形ABCO的对角线,
∴∠BOC=30°,可设D(n,n),则E(n,0),
∵D在反比例函数y=上,
∴n2=2,解得n=(由题意舍n= -),
∴E(,0),
∴OE=,
则有CE=OC-OE=2-.
故答案选C.
掌握菱形的性质,理解“30°角所对应的直角边等于斜边的一半”,再依据勾股定理分别设出点A和点D的坐标,代入反比例函数的解析式.灵活运用菱形和反比例函数的性质和解直角三角形是解题的关键.
5、B
【解析】
5-2=3,5+2=7,只有4在这两个数之间,故能构成三角形的只有B选项的木棒,故选B.
点睛:本题主要考查三角形三边的关系,能正确地应用“两边之和大于第三边,两边之差小于第三边”是解题的关键.
6、D
【解析】
转盘转动共有三种结果,转盘停止后指向偶数的情况一种,所以概率公式求解即可.
【详解】
因为一共三种结果,转盘停止后指向偶数的情况一种,所以P(指向偶数)=
故答案为D.
本题考查的是概率公式的应用.
7、B
【解析】
试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.
解:∵直线y=﹣1x+3中,k=﹣1<0,
∴此函数中y随x的增大而减小,
∵3>﹣1,
∴y1<y1.
故选B.
考点:一次函数图象上点的坐标特征.
8、C
【解析】
根据二次根式的性质和计算法则分别计算可得正确选项。
【详解】
解:A、 不是同类二次根式,不能合并,故本选项错误;
B、不是同类二次根式,不能合并,故本选项错误;
C、正确;
D、,故故本选项错误。
故选:C
本题考查了二次根式的性质和运算,掌握运算法则是关键。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或或
【解析】
由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
【详解】
解:∵∠C=90°,∠A=30°,BC=9,
∴∠B=60°,AB=2BC=18,
①当∠BQP=90°时,如图1所示:则AC∥PQ,
∴∠BPQ=30°,BP=2BQ,
∵BP=18-3t,BQ=t,
∴18-3t=2t,
解得:t=;
②当∠QPB=90°时,如图2所示:
∵∠B=60°,
∴∠BQP=30°,
∴BQ=2BP,
若0<t<6时,
则t=2(18-3t),
解得:t=,
若6<t≤9时,
则t=2(3t-18),
解得:t=;
故答案为:或或.
本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
10、20 12
【解析】
∵=10,
∴=10,
设2,2,2的方差为,
则=2×10=20,
∵ ,
∴
=
=4×3=12.
故答案为20;12.
点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.
11、,
【解析】
(1)将已知长度的三条线段通过旋转放到同一个三角形中,利用勾股定理即可求解;
(2)过点A作于点G,在直角三角形BGA中求出AB长,算出正方形ABCD的面积、三角形APB和三角形APD的面积,作差即得四边形的面积
【详解】
解:(1)将绕点A旋转后得到,连接
绕点A旋转后得到
根据勾股定理得
(2)过点A作于点G
由(1)知,即为等腰直角三角形,
根据勾股定理得
故答案为:(1). , (2).
本题考查了旋转的性质及勾股定理和逆定理,利用旋转作出辅助线是解题的关键.
12、3 (a+5)
【解析】
根据题意,先求和,再求倍数.
解:a与5的和为a+5,
a与5的和的3倍用代数式表示是3(a+5).
列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.
13、2或4
【解析】
根据题意分两种情况,分别画出图形,证明△是等边三角形,根据直角三角形的性质求出OD,即可得到答案.
【详解】
若绕点D顺时针旋转△AED得到△,连接,
∵,,
∴∠A=30°,
∵,
∴AB=4,
∵点D是AB的中点,
∴AD=2,
∵,
∴AD==2,∠=60°,
∴△是等边三角形,
∴=,∠D=60°,且∠EAD=30°,
∴AE平分∠D,
∴AE是的垂直平分线,
∴OD=AD=,
∵AE=DE,
∴∠EAD=∠EDA=30°,
∴DE,
∴2;
若绕点D顺时针旋转△AED得到△,
同理可求=4,
故答案为:2或4.
此题考查旋转的性质,直角三角形30°角所对的直角边等于斜边一半的性质,等边三角形的判定及性质,三角函数.
三、解答题(本大题共5个小题,共48分)
14、 (1)中位数为150分钟,平均数为151分钟.
(2)见解析
【解析】
(1)根据中位数和平均数的概念求解;
(2)根据(1)求得的中位数,与147进行比较,然后推断该选手的成绩.
【详解】
解:(1)将这组数据按照从小到大的顺序排列为:125,134,140,143,146,148,152,155,162,164,168,175,
则中位数为:
平均数为:
(2)由(1)可得中位数为150分钟,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.
15、(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
【解析】
(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同,列方程求解;
(2)设购进B型台灯m盏,根据商场购进100盏台灯且规定B型台灯的进货数量不超过A型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润.
【详解】
解:(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,
根据题意得, ,
解得:x=60,
经检验:x=60是原方程的解,
故x+40=100,
答:每盏A型节能台灯的进价是60元,则B型节能台灯每盏进价为100元;
(2)设购进B型节能台灯m盏,购进A型节能台灯(100﹣m)盏,
依题意有m≤2(100﹣m),
解得m≤66,
90﹣60=30(元),
140﹣100=40(元),
∵m为整数,30<40,
∴m=66,即A型台灯购进34盏,B型台灯购进66盏时获利最多,
34×30+40×66
=1020+2640
=3660(元).
此时利润为3660元.
答:(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.
16、(1);(2)详见解析;(3)
【解析】
(1)由图像可知A,B点的坐标,将点坐标代入一次函数表达式即可确定的值;(2)取直线与x轴,y轴的交点坐标,描点,连线即可;(3)时,的取值范围即直线在直线上方图像所对应的x的取值,由图像即可知.
【详解】
解:(1)由图像可知,,.
将,两点代入中,
得,解得.
(2)对于函数,
列表:
图象如图:
(3)由图象可得:当时,x的取值范围为:.
本题考查了一次函数的综合应用,确定函数k,b值,画函数图像,根据图像写不等式解集,熟练掌握一次函数的相关知识是解题的关键.
17、(1)见详解;(2)见详解;(3)是,见详解
【解析】
(1)由题意得出,需将点B与点C先向左平移3个单位,再向下平移1个单位,据此可得;
(2)分别作出三顶点分别关于点D的对称点,再首尾顺次连接可得;
(3)连接两组对应点即可得.
【详解】
解:(1)如图所示,即为所求.
(2)如图所示,即为所求;
(3)是,如图所示,与是关于点成中心对称.
本题主要考查作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点.
18、AC=2
【解析】
可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
【详解】
∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC,
∴,
∴AC2=AD·AB,
∴AC2=12,
∴AC=2 (负值舍去)
本题考查了相似三角形的判定和性质,两个角相等,两个三角形相似.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用二次根式的性质化简.
【详解】
=.
故选为:.
考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
20、2
【解析】
可依次求出y的值,寻找y值的变化规律,根据规律确定的值.
【详解】
解:将代入反比例函数中得;
将代入函数得;
将代入函数得;
将代入函数得
由以上计算可知:y的值每三次重复一下
故y的值在重复670次后又计算了2次,所以
故答案为:2
本题属于反比例函数的求值规律题,找准函数值的变化规律是解题的关键.
21、b(a﹣b)
【解析】根据提公因式法进行分解即可,ab﹣b2=b(a﹣b),
故答案为:b(a﹣b).
22、①②③
【解析】
由抛物线开口方向得到a<0,由抛物线与y轴交点位置得到c>0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.
【详解】
解:∵抛物线开口向下,
∴a<0,
∵抛物线与y轴交点位于y轴正半轴,
∴c>0,所以①正确;
∵抛物线的对称轴为直线,
∴b=-2a,即2a+b=0,所以②正确;
∵抛物线与x轴有两个不同的交点,
∴b2-4ac>0,所以③正确;
∵x=-1时,y<0,
∴a-b+c<0,所以④错误.
故答案为:①②③.
本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
23、-1
【解析】
根据分式值为0的条件进行求解即可.
【详解】
由题意得,x+1=0,
解得x=-1,
故答案为:-1.
本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)图形见解析;A1的坐标为(2,2),B1点的坐标为(1,﹣2);(2)图形见解析;A2(1,﹣5),B2(2,﹣1),C2(1,﹣1);(1)图形见解析;A1(5,1),B1(1,2),C1(1,1).
【解析】
(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;
(2)根据关于原点对称的点的坐标特征求解;
(1)利用网格和旋转的性质画出△A2B1C1,然后写出△A2B1C1的各顶点的坐标.
【详解】
(1)如图,△A1B1C1为所作,
因为点C(﹣1,1)平移后的对应点C1的坐标为(4,0),
所以△ABC先向右平移5个单位,再向下平移1个单位得到△A1B1C1,
所以点A1的坐标为(2,2),B1点的坐标为(1,﹣2);
(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,
所以A2(1,﹣5),B2(2,﹣1),C2(1,﹣1);
(1)如图,△A2B1C1为所作,A1(5,1),B1(1,2),C1(1,1).
25、(1)﹣2<x≤1(2)见解析
【解析】
(1)通过计算得出不等式组中1-3(x-1)<8-x的解集为x>﹣2,—+3≥x+1的解集为x≤1,得出不等式组的解集为﹣2<x≤1.
(2)先化简得出结果,要想式分式有意义,则分式的分母不能为0,即x≠0、1、3.则x只能取0,1,2,3中的2,将2带入结果中即可得出最终结果.
【详解】
(1) 由1-3(x-1)<8-x得:
1-3x+3<8-x,
1+3-8<-x+3x,
﹣4<2x,
则x>﹣2.
由+3≥x+1得:
x-3+6≥2x+2
﹣3+6-2≥2x-x
则x≤1
所以不等式组的解集为﹣2<x≤1.
(2)÷-
=× -
=× -
=+
=+
=2
要想使分式有意义,必须使分式的分母不能为0,
除法中除数不能为0,
即+3≠0、()≠0、a-3≠0、a-1≠0,
故a≠0、-3、1、3.
所以a只能取0、1、2、3中的2,
将2代入化简结果2a得:
2a=2×2,
=4.
本题主要考查解不等式组以及分式的化简求值.易错点在于第(2)问的化简求值,往往忽略了分式有意义的条件.
26、(1)20%;(2)12.1.
【解析】
试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;
(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.
试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得
7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).
答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;
(2)10800(1+0.2)=12960(本)
10800÷1310=8(本)
12960÷1440=9(本)
(9﹣8)÷8×100%=12.1%.
故a的值至少是12.1.
考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.
题号
一
二
三
四
五
总分
得分
批阅人
x
0
1
y
﹣2
0
相关试卷
这是一份2024-2025学年河南省郑州市郑州枫杨外国语学校数学九年级第一学期开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省郑州市新密市九上数学开学达标检测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省郑州市七十三中学九上数学开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。