2024-2025学年黑龙江齐齐哈尔市建华区九上数学开学经典模拟试题【含答案】
展开
这是一份2024-2025学年黑龙江齐齐哈尔市建华区九上数学开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为
A.B.
C.D.
2、(4分)如图,折叠菱形纸片ABCD,使得A′D′对应边过点C,若∠B=60°,AB=2,当A′E⊥AB时,AE的长是( )
A.2B.2C.D.1+
3、(4分)已知:,计算:的结果是()
A.B.C.D.
4、(4分)一次函数y=x﹣1的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是( )
A.众数是58B.平均数是50
C.中位数是58D.每月阅读数量超过40本的有6个月
6、(4分)将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是( )
A.30°B.45°C.60°D.70°
7、(4分)若点在第四象限,则的取值范围是( )
A.B.C.D.
8、(4分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的.设这种电子产品的价格在这两年中平均每年下降x,则根据题意可列出方程( )
A.1﹣2xB.2(1﹣x)C.(1﹣x)2D.x(1﹣x)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.
10、(4分)一组数据3,4,x,6,7的平均数为5,则这组数据的方差______.
11、(4分)已知、、是反比例函数的图象上的三点,且,则、、的大小关系是________________.
12、(4分)已知是一次函数,则__________.
13、(4分)若a≠b,且a2﹣a=b2﹣b,则a+b=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)树叶有关的问题
如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。
某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:
表1 A树、B树、C树树叶的长宽比统计表
表1 A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表
A树、B树、C树树叶的长随变化的情况
解决下列问题:
(1)将表2补充完整;
(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”
②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”
请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;
(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。
15、(8分)已知函数y=和y=,A(1,n)、B(m,4)两点均在函数y=的图像上,设两函数y=和y=的图像交于一点P.
(1)求实数m,n的值;
(2)求P,A,B三点构成的三角形PAB的面积.
16、(8分)如图1,平行四边形ABCD在平面直角坐标系中,A、B(点A在点B的左侧)两点的横坐标是方程的两个根,点D在y轴上其中.
(1)求平行四边形ABCD的面积;
(2)若P是第一象限位于直线BD上方的一点,过P作于E,过E作轴于H点,作PF∥y轴交直线BD于F,F为BD中点,其中△PEF的周长是;若M为线段AD上一动点,N为直线BD上一动点,连接HN,NM,求的最小值,此时y轴上有一个动点G,当最大时,求G点坐标;
(3)在(2)的情况下,将△AOD绕O点逆时针旋转60°后得到如图2,将线段沿着x轴平移,记平移过程中的线段为,在平面直角坐标系中是否存在点S,使得以点,,E,S为顶点的四边形为菱形,若存在,请求出点S的坐标,若不存在,请说明理由.
17、(10分)关于的一元二次方程.
(1)方程有实数根,求的范围;
(2)求方程两根的倒数和.
18、(10分) (1)解方程:﹣=1
(2)先化简,再求值:÷(﹣x﹣2),其中x=﹣2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)大型古装历史剧《那年花开月正圆》火了“晋商”一词,带动了晋商文化旅游的发展.图是清代某晋商大院艺术窗的一部分,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为________cm.
20、(4分)不等式组的解集是________.
21、(4分)A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.
22、(4分)若,则的值是________
23、(4分)如图,已知,,,当时,______.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)因式分解:
(2)解不等式组:
25、(10分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.
(1)请你写出这个定理的逆命题是________;
(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.
26、(12分)如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)
(1)求k,b的值;
(2)求四边形MNOB的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.
【详解】
解:根据题意,得:
故选:A.
此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.
2、B
【解析】
先延长AB,D'A'交于点G,根据三角形外角性质以及等腰三角形的判定,即可得到BC=BG=BA,设AE=x=A'E,则BE=2−x,GE=4−x,A'G=2x,在Rt△A'GE中,依据勾股定理可得A'E2+GE2=A'G2,进而得出方程,解方程即可.
【详解】
解:如图所示,延长AB,D'A'交于点G,
∵A'E⊥AB,∠EA'C=∠A=120°,
∴∠BGC=120°﹣90°=30°,
又∵∠ABC=60°,
∴∠BCG=60°﹣30°=30°,
∴∠BGC=∠BCG=30°,
∴BC=BG=BA,
设AE=x=A'E,则BE=AB﹣AE=2﹣x,A'G=2x,
∴GE=BG+BE=2+2﹣x=4﹣x,
∵Rt△A'GE中,A'E2+GE2=A'G2,
∴x2+(4﹣x)2=(2x)2,
解得:x=﹣2+2,(负值已舍去)
∴AE=2﹣2,
故选B.
本题主要考查了折叠问题,等腰三角形的判定,菱形的性质,解一元二次方程以及勾股定理的运用;解决问题的关键是作辅助线构造直角三角形,依据勾股定理列方程求解.
3、C
【解析】
原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.
【详解】
∵,,
∴
,
故选:C.
本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
4、B
【解析】
分析:根据函数图像的性质解决即可.
解析: 的图像经过第一、三、四象限,所以不经过第二象限.
故选B.
5、B
【解析】
根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
A. 出现次数最多的是58,众数是58,故A正确;
B.平均数为:,故B错误;
C. 由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;
D. 由折线统计图看出每月阅读量超过40本的有6个月,故D正确;
故选:B
此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.
6、C
【解析】
先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.
【详解】
解:如图所示,
∵l1∥l2,
∴∠A=∠ABC=30°,
又∵∠CBD=90°,
∴∠α=90°﹣30°=60°,
故选C.
此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.
7、D
【解析】
根据第四象限内点的坐标特征为(+,-)列不等式求解即可.
【详解】
由题意得
2m-1
相关试卷
这是一份2024-2025学年黑龙江齐齐哈尔市建华区数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。