2024-2025学年黑龙江省大庆市肇源县第四中学九上数学开学联考试题【含答案】
展开
这是一份2024-2025学年黑龙江省大庆市肇源县第四中学九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知直线y=kx+b经过一、二、三象限,则直线y=bx-k-2的图象只能是( )
A.B.C.D.
2、(4分)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于( )
A.100°B.105°C.115°D.120°
3、(4分)使得关于x的不等式组有解,且关于x的方程的解为整数的所有整数a的和为( )
A.5B.6C.7D.10
4、(4分)能够判定一个四边形是平行四边形的条件是( )
A.一组对角相等B.两条对角线互相平分
C.两条对角线互相垂直D.一对邻角的和为180°
5、(4分)下列四个多项式中,不能因式分解的是( )
A.a2+aB.C.D.
6、(4分)如图,平行四边形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD,将△BCD 绕点 B 旋转,当 BD(即 BD′)与 AD 交于一点 E,BC(即 BC′)同时与 CD 交于一点 F 时,下列结论正确的是( )
①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周长的最小值是4+2
A.①②B.②③C.①②④D.①②③④
7、(4分)如图,菱形ABCD的对角线AC、BD交于点O,E、F分别是AD、CD边的中点,连接EF,若,,则菱形ABCD的面积是
A.24B.20C.12D.6
8、(4分)方程的解是( )
A.x=3B.x=2C.x=1D.x=﹣1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.
10、(4分)在函数y=中,自变量x的取值范围是_______.
11、(4分)已知x+y=0.2,2x+3y=2.2,则x2+4xy+4y2=_____.
12、(4分)若分式的值为0,则x的值是_____.
13、(4分)画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点
(1)在图1中以格点为顶点画一个面积为5的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.
15、(8分)(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;
⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
16、(8分)如图,的直角边OB在x轴的正半轴上,反比例函数的图象经过斜边OA的中点D,与直角边AB相交于点C.
①若点,求点C的坐标:
②若,求k的值.
17、(10分)计算: (1); (2).
18、(10分)已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2),
(1)求这两个函数的关系式;
(2)观察图象,写出使得>ax+b成立的自变量x的取值范围;
(3)过点A作AC⊥x轴,垂足为C,在平面内有点D,使得以A,O,C,D四点为顶点的四边形为平行四边形,直接写出符合条件的所有D点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.
20、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.
21、(4分)在菱形ABCD中,AE垂直平分BC,垂足为E,AB=6,则菱形ABCD的对角线BD的长是_____.
22、(4分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.
23、(4分)将矩形按如图所示的方式折叠,得到菱形,若,则菱形的周长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.
(1)第一批手机壳的进货单价是多少元?
(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?
25、(10分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm,3dm,2dm,点和点是这个台阶两个相对的端点,点处有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是多少?
26、(12分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:
甲:394,400,408,406,410,409,400,400,393,395
乙:402,404,396,403,402,405,397,399,402,398
整理数据:
表一
分析数据:
表二
得出结论:
包装机分装情况比较好的是______(填甲或乙),说明你的理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由直线y=kx+b经过一、二、三象限可得出k>0,b>0,进而可得出−k−2<0,再利用一次函数图象与系数的关系可得出直线y=bx−k−2的图象经过第一、三、四象限.
【详解】
解:∵直线y=kx+b经过一、二、三象限,
∴k>0,b>0,
∴−k−2<0,
∴直线y=bx−k−2的图象经过第一、三、四象限.
故选:C.
本题考查了一次函数图象与系数的关系,牢记“k>0,b>0时,y=kx+b的图象在一、二、三象限;k>0,b<0时,y=kx+b的图象在一、三、四象限”是解题的关键.
2、B
【解析】
分析:根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数即可.
详解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.
故选B.
点睛:本题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题的关键.
3、C
【解析】
根据不等式组的解集的情况求得a的解集,再解分式方程得出x,根据x是整数得出a所有的a的和.
【详解】
不等式组整理得:,
由不等式组有解,得到a>-1,
分式方程去分母得:(a-1)x=4,
解得:x=,
由分式方程的解为整数,得到a-1=-1,-2,2,-4,1,4,
解得:a=0,-1,-3,3,2,5,
∴a=0,2,3,5,
∵x≠2,
∴≠2,
∴a≠3,
∴a=0,2,5
则所有整数a的和为7,
故选C.
本题考查了分式方程的解以及不等式的解集,求得a的取值范围以及解分式方程是解题的关键.
4、B
【解析】
试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法选择即可.
解:根据平行四边形的判定可知B正确.
故选B.
【点评】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
5、C
【解析】
逐项分解判断,即可得到答案.
【详解】
解:A选项a2+a=a(a+1);
B选项=(m+n)(m-n);
C选项. 不能因式分解;
D选项. =(a+3)2.
故选C
本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).
6、C
【解析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.
【详解】
∵AB=BC=CD=AD=4,∠A=∠C=60°,
∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°.
∵将△BCD绕点B旋转到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°.
故①正确,③错误;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°.
故②正确;
∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,
∴当EF最小时.∵△DEF的周长最小.
∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,
∴EF=BE,
∴当BE⊥AD时,BE长度最小,即EF长度最小.
∵AB=4,∠A=60°,BE⊥AD,
∴EB=2,
∴△DEF的周长最小值为4+2.
故④正确.
故选C.
本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.
7、A
【解析】
根据EF是的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.
【详解】
解:、F分别是AD,CD边上的中点,即EF是的中位线,
,
则.
故选:A.
本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.
8、D
【解析】
采用排除法和代入法相结合,即可确定答案。
【详解】
解:由x=1为增根,故排除C;A选项,当x=3,方程左边为1,右边为,显然不对;B选项,当x=2时,方程左边为2,右边,显然不对;当x=-1时,方程左边为-1,右边为-1,即D正确;故答案为D.
本题考查了分式方程的解法,但作为选择题,采用排除法和代入法也是一种不错的选择。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-1,3)
【解析】
直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,
∴两直线的交点即为方程组的解,
故交点坐标为(-1,3).
故答案为(-1,3).
10、x≥﹣2且x≠0
【解析】
根据题意得x+2≥0且x≠0,即x≥-2且x≠0.
11、4
【解析】
因为x2+4xy+4y2=(x+2y)²,只要求出x+2y即可,因为2x+3y=2.2减去x+y=0.2,刚好得到x+2y=2,所以结果为4,当然后你也可以用解二元一次方程组求出x,y然后再求代数x2+4xy+4y2的值
【详解】
解:用方程+3y=2.2减去方程x+y=0.2,得x+2y=2,故x2+4xy+4y2=(x+2y)²=4
本题利用了整式的乘法解决的,还可以用解一元二次方程的方法求解。
12、-2
【解析】
根据分子等于零且分母不等于零列式求解即可.
【详解】
解:由分式的值为2,得
x+2=2且x﹣2≠2.
解得x=﹣2,
故答案为:﹣2.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.
13、640
【解析】
首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.
【详解】
解:设这个零件的实际长是xcm,根据题意得:
,
解得:x=640,
则这个零件的实际长是640cm.
故答案为:640
此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.
三、解答题(本大题共5个小题,共48分)
14、 (1)详见解析;(2)详见解析.
【解析】
(1)直接利用勾股定理结合网格得出符合题意的图形,
(2)直接利用勾股定理结合网格得出符合题意的图形.
【详解】
解:(1)如图1所示:正方形ABCD即为所求;
(2)如图2所示:三角形ABC即为所求.
本题考查了利用勾股定理求直角三角形的边长,熟练掌握定理即可求解.
15、(1)①6 ,②见解析;(2)△PDM的周长保持不变,理由见解析.
【解析】
(1)①由折叠知BE=EM,AE+EM+AM=AE+EB+AM=AB+AM,根据边长及中点易求周长;②延长EM交CD延长线于Q点.可证△AEM≌△DQM,得AE=DQ,EM=MQ.所以PM垂直平分EQ,得EP=PQ,得证;
(2)不变化,可证△AEM∽△DMP,两个三角形的周长比为AE:MD,设AM=x,根据勾股定理可以用x表示MD的长与△MAE的周长,再根据周长比等于相似比,即可求解.
【详解】
(1)①由折叠可知,BE=BM,∠B=∠MEP=90°,
△AEM的周长= AE+EM+AM=AE+EB+AM=AB+AM.
∵AB=4,M是AD中点,
∴△AEM的周长=6(cm)
②证明:延长EM交CD延长线于Q点.
∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ,
∴△AME≌△DMQ.
∴AE=DQ,EM=MQ.
又∵∠EMP=∠B=90°,
∴PM垂直平分EQ,有EP=PQ.
∵PQ=PD+DQ,
∴EP=AE+PD.
(2)△PDM的周长保持不变,
证明:设AM=xcm,则DM=(4-x)cm ,
Rt△EAM中,由,
,
∵∠AME+∠AEM=90°,
∠AME+∠PMD=90°,
∴∠AEM=∠PMD,
又∵∠A=∠D=90°,
∴△PDM∽△MAE,
∴,
即,
∴,
∴△PDM的周长保持不变.
16、①(4,);②k=12
【解析】
①根据点D是OA的中点即可求出D点坐标,再将D的坐标代入解析式求出解析式,从而得到C的坐标;
②连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD的面积,再根据条件列出方程求k的值即可。
【详解】
解:①∵D是OA的中点,点A的坐标为(4,6),
∴D(,),即(2,3)
∴k=2×3=6
∴解析式为
∵A的坐标为(4,6),AB⊥x轴
∴把x=4代入得y=
∴C的坐标为(4,)
②连接OC,
设A(a,b),则D(,)
可得k=,ab=4k
∴解析式为
∴B(a,0),C(a,)
∴
∴
解得:k=12
本题考查了一次函数的性质,要正确理解参数k的几何意义,能用代数式表达三角形OCD的面积是解题的关键。
17、(1)6;(2)
【解析】
分析:(1)根据二次根式的乘法进行计算即可;(2)首先化简各式进而合并同类项求出即可.
详解:(1)(1)原式;
(2)(π+1)0-+||=1-2+ =1-;
点睛:本题考查了二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.
18、(2)y=2x+2;(2)x<﹣2或0<x<2;(3)(0,﹣4),(0,4)或(2,4).
【解析】
(2)首先将A点坐标代入反比例函数,进而计算出k的值,再将B点代入反比例函数的关系式,求得参数m的值,再利用待定系数法求解一次函数的解析式.
(2)根据题意要使>ax+b则必须反比例函数的图象在一次函数之上,观察图象即可得到x的取值范围.
(3)首先写出A、C的坐标,再根据对角为OC、OA、AC进行分类讨论.
【详解】
解:(2)将A(2,4)代入y=,得:4=k,
∴反比例函数的关系式为y=;
当y=﹣2时,﹣2=,解得:m=﹣2,
∴点B的坐标为(﹣2,﹣2).
将A(2,4),B(﹣2,﹣2)代入y=ax+b,得: ,
解得:,
∴一次函数的关系式为y=2x+2.
(2)观察函数图象,可知:当x<﹣2或0<x<2时,反比例函数图象在一次函数图象上方,
∴使得>ax+b成立的自变量x的取值范围为x<﹣2或0<x<2.
(3)∵点A的坐标为(2,4),
∴点C的坐标为(2,0).
设点D的坐标为(c,d),分三种情况考虑,如图所示:
①当OC为对角线时, ,
解得: ,
∴点D2的坐标为(0,﹣4);
②当OA为对角线时,
解得:
∴点D2的坐标为(0,4);
③当AC为对角线时, ,
解得: ,
∴点D3的坐标为(2,4).
综上所述:以A,O,C,D四点为顶点的四边形为平行四边形时,点D的坐标为(0,﹣4),(0,4)或(2,4).
本题主要考查反比例函数和一次函数的综合性问题,这类题目是考试的热点问题,综合性比较强,但是也很容易,应当熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.
【详解】
解:设一次函数的解析式为:,
解得:
所以这个一次函数的解析式为:
故答案为:
本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.
20、8 0.4
【解析】
频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.
【详解】
解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.
故答案为: (1). 8 (2). 0.4
本题考查了频数与频率,依据两者的定义即可解题.
21、6
【解析】
先证明△ABC是等边三角形,得出AC=AB,再得出OA,根据勾股定理求出OB,即可得出BD.
【详解】
如图,
∵菱形ABCD中,AE垂直平分BC,
∴AB=BC,AB=AC,OA=AC,OB=BD,AC⊥BD,
∴AB=BC=AC=6,
∴OA=3,
∴OB=,
∴BD=2OB=6,
故答案为:6.
本题考查了菱形的性质、勾股定理的运用;熟练掌握菱形的性质,证明等边三角形和运用勾股定理求出OB是解决问题的关键.
22、1
【解析】
根据∠BAD和菱形邻角和为180°的性质可以求∠ABC的值,根据菱形对角线即角平分线的性质可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根据∠BOE和菱形对角线互相垂直的性质可以求得∠EOA的大小.
【详解】
解:∵∠BAD=80°,菱形邻角和为180°
∴∠ABC=100°,
∵菱形对角线即角平分线
∴∠ABO=50°,
∵BE=BO
∴∠BEO=∠BOE==65°,
∵菱形对角线互相垂直
∴∠AOB=90°,
∴∠AOE=90°-65°=1°,
故答案为 1.
本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了等腰三角形底角相等的性质,本题中正确的计算∠BEO=∠BOE=65°是解题的关键.
23、1
【解析】
根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=AB=3,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=BC=3,CE=2BE=6,于是可得菱形AECF的周长.
【详解】
解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,
∴AD=AO,CO=BC,∠BCE=∠OCE,
而AD=BC,
∴AC=2BC,
∴∠CAB=30°,
∴BC=AB=3,∠ACB=60°,
∴∠BCE=30°,
∴BE=BC=3,
∴CE=2BE=6,
∴菱形AECF的周长=4×6=1.
故答案为:1
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.
二、解答题(本大题共3个小题,共30分)
24、(1)8元;(2)1元.
【解析】
(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.
【详解】
解:(1)设第一批手机壳进货单价为x元,
根据题意得:3• = ,
解得:x=8,
经检验,x=8是分式方程的解.
答:第一批手机壳的进货单价是8元;
(2)设销售单价为m元,
根据题意得:200(m-8)+600(m-10)≥2000,
解得:m≥1.
答:销售单价至少为1元.
本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.
25、最短路程是25dm.
【解析】
先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.
【详解】
三级台阶平面展开图为长方形,长为20dm,宽为,
则蚂蚁沿台阶面爬行到点最短路程是此长方形的对角线长.
可设蚂蚁台阶面爬行到点最短路程为.
由勾股定理,得,
解得.
因此,蚂蚁沿着台阶面爬到点的最短路程是25dm.
此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.
26、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.
【解析】
整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.
【详解】
整理数据:
表一中,
甲组:393≤x<396的有3个,405≤x<408的有1个;
乙组:402≤x<405的有5个;
故答案为:3,1,5;
分析数据:
表二中,
甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,
中位数为中间两个数据的平均数==400,
乙组:出现次数最多的数据是402,
∴众数是402;
故答案为:400,402;
得出结论:
包装机分装情况比较好的是乙;理由如下:
由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,
所以包装机分装情况比较好的是乙.
故答案为:乙(答案不唯一,合理即可).
本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.
题号
一
二
三
四
五
总分
得分
频数种类
质量()
甲
乙
____________
0
0
3
3
1
0
____________
____________
1
3
0
种类
甲
乙
平均数
401.5
400.8
中位数
____________
402
众数
400
____________
方差
36.85
8.56
相关试卷
这是一份2024-2025学年黑龙江省肇源县数学九上开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省大庆市肇州实验中学九上数学开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省大庆市林甸县九上数学开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。