


2024-2025学年湖北省华中学师大附中九年级数学第一学期开学经典模拟试题【含答案】
展开
这是一份2024-2025学年湖北省华中学师大附中九年级数学第一学期开学经典模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式有意义,则x的取值范围是( )
A.x≠1B.x≠﹣1C.x=1D.x=﹣1
2、(4分)化简的结果是( ).
A.B.C.D.
3、(4分)下列说法:(1)8的立方根是.(2) 的平方根是.(3)负数没有立方根. (4)正数有两个平方根,它们互为相反数.其中错误的有( )
A.4个B.3个C.2个D.1个
4、(4分)下列二次根式计算正确的是( )
A.-=1B.+=C.×=D.÷=
5、(4分)7 的小数部分是( )
A.4 -B.3 C.4 D.3
6、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.3,4,5B.13,14,15C.5,12,13D.15,8,17
7、(4分)如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点和A点重合,则EB的长是( )
A.3B.4C.D.5
8、(4分)1的平方根是( )
A.1B.-1C.±1D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知5个数的平均数为,则这六个数的平均数为___
10、(4分)如图在中,,,的平分线交于,交的延长线于,则的值等于_________.
11、(4分)若的整数部分是a,小数部分是b,则______.
12、(4分)已知关于的方程会产生增根,则的值为________.
13、(4分)若有意义,则的取值范围为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)
(2)()()
15、(8分)计算:
(1)|1-2|+.
(2)
16、(8分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:
(1)八年级(1)班共有 名学生;
(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数 ;
(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.
17、(10分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:
(1)画出关于原点的中心对称图形;
(2)画出将绕点顺时针方向旋转90°得到的.
(3)设为边上一点,在上与点对应的点是.则点坐标为__________.
18、(10分)如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B离墙的距离大5米.
(1)这个云梯的底端B离墙多远?
(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在,,,,中任意取一个数,取到无理数的概率是___________.
20、(4分)已知x=, ,则x2+2xy+y2的值为_____.
21、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
22、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.
23、(4分)在某次数学测验中,班长将全班50名同学的成绩(得分为整数)绘制成频数分布直方图(如图),从左到右的小长方形高的比为0.6:2:4:2.2:1.2,则得分在70.5到80.5之间的人数为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平面直角坐标系中,点在轴上,点在轴上.
(1)求直线的解析式;
(2)若轴上有一点使得时,求的面积.
25、(10分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.
(1)求6年1班40人一分钟内平均每人跳绳多少个?
(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?
26、(12分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据分母不能为零,可得答案.
【详解】
解:由题意,得
x﹣1≠0,
解得x≠1,
故选:A.
本题考查了分式有意义的条件,利用分母不为零得出不等式是解题的关键
2、B
【解析】
根据三角形法则计算即可解决问题.
【详解】
解:原式
,
故选:B.
本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.
3、B
【解析】
(1)(3)根据立方根的定义即可判定;
(2)根据算术平方根和平方根的定义即可判定;
(4)根据平方根的定义即可判定.
【详解】
(1)8的立方根是2,原来的说法错误;
(2)=16,16的平方根是±4,原来的说法错误;
(3)负数有立方根,原来的说法错误;
(4)正数有两个平方根,它们互为相反数是正确的.
错误的有3个.
故选B.
此题考查了相反数,立方根和算术平方根、平方根的性质,要掌握一些特殊数字的特殊性质,如1,-1和1.
相反数的定义:只有符号相反的两个数叫互为相反数;
立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1.
算术平方根是非负数.
4、C
【解析】
本题需根据二次根式的乘除法和加减法分别进行判断,即可求出正确答案.
【详解】
A、∵-≠,故本选项错误;
B、∵+≠,故本选项错误;
C、∵×=.故本选项正确;
D、÷=≠,故本选项错误;
故选C.
本题主要考查了二次根式的乘除法和加减法,在解题时要注意知识的综合应用是本题的关键.
5、A
【解析】
先对进行估算,然后确定7-的范围,从而得出其小数部分.
【详解】
解:∵3<<4
∴-4<-<-3
∴3<7-<4
∴7-的整数部分是3
∴7-的小数部分是7--3=4-
故选:A.
本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在3和4之间,题目比较典型.
6、B
【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.
【详解】
解:A选项中,,∴能构成直角三角形;
B选项中,,∴不能构成直角三角形;
C选项中,,∴能构成直角三角形;
D选项中,,∴能构成直角三角形;
故选B.
本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.
7、A
【解析】
设BE=x,则AE=EC=8-x,在RT△ABE中运用勾股定理可解出x的值,继而可得出EB的长度.
解:设BE=x,则AE=EC=8-x,
在RT△ABE中,AB2+BE2=AE2,即42+x2=(8-x)2,
解得:x=1.
即EB的长为1.
故选A.
本题考查了翻折变换的知识,解答本题需要在RT△ABE中利用勾股定理,关键是根据翻折的性质得到AE=EC这个条件.
8、C
【解析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得x=a,则x就是a的平方根,由此即可解决问题.
【详解】
∵(±1) =1,
∴1的平方根是±1.
故选:C.
此题考查平方根,解题关键在于掌握其定义
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据前5个数的平均数为m,可得这5个数的总和,加上第6个数0,利用平均数的计算公式计算可得答案.
【详解】
解:∵
∴
∴
∴这六个数的平均数
此题主要考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是判断出:.
10、4
【解析】
根据平行四边形的性质得到∠F=∠DCF,根据角平分线的性质得到BF=BC=8,从而解得答案.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=8,CD=AB=6,
∴∠F=∠DCF,
∵∠C平分线为CF,
∴∠FCB=∠DCF,
∴∠F=∠FCB,
∴BF=BC=8,
同理:DE=CD=6,
∴AF=BF-AB=2,AE=AD-DE=2,
∴AE+AF=4;
本题考查平行四边形的性质和角平分线的性质,解题的关键是掌握平行四边形的性质和角平分线的性质.
11、1.
【解析】
若的整数部分为a,小数部分为b,
∴a=1,b=,
∴a-b==1.
故答案为1.
12、1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k的值.
【详解】
解:方程两边都乘(x-4),得
2x=k
∵原方程增根为x=4,
∴把x=4代入整式方程,得k=1,
故答案为:1.
此题考查分式方程的增根,解题关键在于掌握增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
13、
【解析】
根式有意义,被开方式要大于等于零.
【详解】
解:∵有意义,
∴2x0,
解得:
故填.
本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)直接化简二次根式进而计算得出答案;
(2)直接利用二次根式的乘法运算法则计算得出答案.
【详解】
(1)原式
.
(2)原式
.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
15、(1)0;(2).
【解析】
(1)根据绝对值的意义、零指数幂的意义计算;
(2)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.
【详解】
(1)解:原式.
(2)解:原式.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、(1)50;(2)见解析;57.6°;(3)368.
【解析】
(1)根据“不得奖”人数及其百分比可得总人数;
(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;
(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.
【详解】
解:(1)八年级(1)班共有 =50
(2)获一等奖人数为:50×10%=5(人),
补全图形如下:
∵获“二等奖”人数所长百分比为1−50%−10%−20%−4%=16%,
“二等奖”对应的扇形的圆心角度数是×16%=57.6,
(3)(名)
此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据
17、(1)见解析;(2)见解析;(3)(b,-a).
【解析】
(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点,顺次连接即可;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;
(3)利用A与A2、B与B2、C与C2的坐标特征确定对应点的坐标变换规律,从而写出点P1坐标.
【详解】
解:(1)如图,△A1B1C1即为所作;
(2)如图,△A2B2C2即为所作;
(3)点P1坐标为(b,-a).
故答案为:(b,-a).
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
18、(1)这个云梯的底端B离墙20米;(2)梯子的底部在水平方向右滑动了4米.
【解析】
(1)由题意得OA=15米,AB-OB=5米,根据勾股定理OA2+OB2=AB2,可求出梯子底端离墙有多远;
(2)由题意得此时CO=7米,CD=AB=25米,由勾股定理可得出此时的OD,继而能和(1)的OB进行比较.
【详解】
解:(1)设梯子的长度为米,则云梯底端B离墙为米。
这个云梯的底端B离墙20米。
(2)∵
∴=576
∴
∴
梯子的底部在水平方向右滑动了4米。
此题主要考查了勾股定理得应用,关键是正确理解题意,掌握直角三角形两直角边的平方和等于斜边的平方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.
【详解】
解:∵在,,,,中无理数只有这1个数,
∴任取一个数,取到无理数的概率是,
故答案为:.
此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.
20、1
【解析】
先把x2+2xy+y2进行变形,得到(x+y)2,再把x,y的值代入即可求出答案.
【详解】
∵x=,,
∴x2+2xy+y2=(x+y)2=(+1+﹣1)2=(2)2=1;
故答案为:1.
此题考查了二次根式的化简求值,用到的知识点是完全平方公式,二次根式的运算,关键是对要求的式子进行变形.
21、(0,7)或(0,-7)
【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
【详解】
∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
∴点P的坐标为(0,7)或(0,-7).
此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
22、1
【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.
【详解】
如图,由题意知,AB=5,AC=6,
∴AO=OC=3,
∵菱形对角线互相垂直平分,
∴△ABO为直角三角形,
在Rt△ABO中,AB=5,AO=3,
∴BO==4,
故BD=2BO=1,
故答案为: 1.
本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
23、20
【解析】
所有小长方形高的比为0.6:2:4:2.2:1.2,可以求出得分在70.5到80.5之间的人数的小长方形的高占总高的比,进而求出得分在70.5到80.5之间的人数.
【详解】
解:人
故答案为:20
考查频数分布直方图的制作特点以及反映数据之间的关系,理解各个小长方形的高表示的实际意义,用所占比去乘以总人数就得出相应的人数.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)的面积为或
【解析】
(1)根据点A,B的坐标,利用待定系数法可求出直线AB的解析式;
(2)设点P的坐标为(t,0),分点P在原点左侧及点P在原点右侧两种情况考虑:①若点P在x轴上原点左侧,当PB=AP时,∠APO=2∠ABO,在Rt△APO中,利用勾股定理可求出t的值,进而可得出BP的长,再利用三角形的面积公式可求出△ABP的面积;②若点P在x轴上原点右侧,由对称性,可得出点P′的坐标,进而可得出BP′的长,再利用三角形的面积公式可求出△ABP′的面积.综上,此题得解
【详解】
解:(1)设直线的解析式为,则:
解得:
∴所求直线的解析式为:
(2)设点为
①若点在轴上原点左侧,当时,
在中,,,
∴
解得:
∴
∴
②若点在轴上原点右侧,由对称性,得点为,此时,
∴
综合上述,的面积为或.
本题考查了待定系数法求一次函数解析式、勾股定理以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB的解析式;(2)分点P在原点左侧及点P在原点右侧两种情况,求出△ABP的面积.
25、(1)40人一分钟内平均每人跳绳102;;(2)6(1)班能得到学校奖励.
【解析】
(1)根据加权平均数的计算公式进行计算即可;
(2)根据评分标准计算总积分,然后与1比较大小.
【详解】
解:(1)6(1)班40人中跳绳的平均个数为100+=102个,
答:40人一分钟内平均每人跳绳102;
(2)依题意得:(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288>1.
所以6(1)班能得到学校奖励.
本题考查了加权平均数,正负数在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
26、原计划每天能完成125套.
【解析】
试题解析:
设原计划每天能完成套衣服,由题意得
解得:
经检验,是原分式方程的解.
答:原计划每天能完成125套.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年湖北省天门市六校数学九年级第一学期开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省东莞市可园中学九年级数学第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年甘肃省靖远县数学九年级第一学期开学经典模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
