|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】01
    2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】02
    2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】

    展开
    这是一份2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图, 直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点, 点P为OA上一动点, 当PC+PD最小时, 点P的坐标为( )
    A.(-4,0)B.(-1,0)C.(-2,0)D.(-3,0)
    2、(4分)为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为( )
    A.20,16B.l6,20C.20,l2D.16,l2
    3、(4分)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()
    A.1个B.2个C.3个D.4个
    4、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离(米)与甲出发的时间(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙用16分钟追上甲;③乙走完全程用了30分钟;④乙到达终点时甲离终点还有360米.其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    5、(4分)下列边长相等的正多边形的组合中,不能镶嵌平面的是( )
    A.正三角形和正方形B.正三角形和正六边形
    C.正方形和正八边形D.正五边形和正方形
    6、(4分)下列图形是中心对称图形的是( )
    A.B.
    C.D.
    7、(4分)不等式组的解集在数轴上可表示为( )
    A.B.C.D.
    8、(4分)若菱形的周长为16,高为2,则菱形两个邻角的比为( )
    A.6:1B.5:1C.4:1D.3:1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)写出一个轴对称图形但不是中心对称图形的四边形:__________________
    10、(4分)如图,已知函数y=kx+2与函数y=mx-4的图象交于点A,根据图象可知不等式kx+2<mx-4的解集是__________.
    11、(4分)一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.
    12、(4分)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为__(用含n的代数式表示,n为正整数).
    13、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
    (1)求反比例函数解析式和点C的坐标;
    (2)求△OCD的面积.
    15、(8分)已知反比例函数y=的图象经过点A(x1,y1)和B(x2,y2)(x1<x2)
    (1)若A(4,n)和B(n+,3),求反比例函数的表达式;
    (2)若m=1,
    ①当x2=1时,直接写出y1的取值范围;
    ②当x1<x2<0,p=,q=,试判断p,q的大小关系,并说明理由;
    (3)若过A、B两点的直线y=x+2与y轴交于点C,连接BO,记△COB的面积为S,当<S<1,求m的取值范围.
    16、(8分)张明、王成两位同学在初二学年10次数学单元检测的成绩(成绩均为整数,且个位数为0)如图所示利用图中提供的信息,解答下列问题:
    (1)完成下表:
    (2)如果将90分以上(含90分)的成绩视为优秀,则优秀率较高的同学是 ;
    (3)根据图表信息,请你对这两位同学各提出学习建议.
    17、(10分)阅读材料:在实数范围内,当且时 ,我们由非负数的性质知道,所以, 即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值. 则有最小值:请问: 若 , 则当取何值时,代数式取最小值? 最小值是多少?
    18、(10分)在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N.
    (1)写出点C的坐标;
    (2)求证:MD=MN;
    (3)连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在 中,若是 的正比例函数,则常数 _____.
    20、(4分)如图,是内的一点,,点分别在的两边上,周长的最小值是____.
    21、(4分)小聪让你写一个含有字母的二次根式.具体要求是:不论取何实数,该二次根式都有意义,且二次根式的值为正.你所写的符合要求的一个二次根式是______.
    22、(4分)若直角三角形的两边长分别为1和2,则斜边上的中线长为_____.
    23、(4分)2x-3>- 5的解集是_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.
    (1)点D、E分别在线段BA、BC上;
    ①若∠B=60°(如图1),且AD=BE,BD=CE,则∠APD的度数为 ;
    ②若∠B=90°(如图2),且AD=BC,BD=CE,求∠APD的度数;
    (2)如图3,点D、E分别在线段AB、BC的延长线上,若∠B=90°,AD=BC,∠APD=45°,求证:BD=CE.
    25、(10分)某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图1).图2中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.
    (1)求、的函数解析式;
    (2)当逃到离海岸12海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离;若不能,请说明理由.

    26、(12分)如图,边长为1的菱形中,,连结对角线,以为边作第二个菱形,使,连结,再以为边作第三个菱形使…按此规律所作的第2019个菱形的边长是__________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.
    【详解】
    解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示
    在中,当y=0时,,解得x=-8,A点坐标为,
    当x=0时,,B点坐标为,
    ∵点C、D分别为线段AB、OB的中点,
    ∴点C(-4,3),点D(0,3),CD∥x轴,
    ∵点D′和点D关于x轴对称,
    ∴点D′的坐标为(0,-3),点O为线段DD′的中点.
    又∵OP∥CD,
    ∴OP为△CD′D的中位线,点P为线段CD′的中点,
    ∴点P的坐标为,
    故选:C.
    本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD值最小时点P的位置是解题的关键.
    2、A
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【详解】
    解:在这一组数据中20是出现次数最多的,故众数是20;
    将这组数据从大到小的顺序排列后,处于中间位置的数是1,1,那么这组数据的中位数1.
    故选:A.
    本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.
    3、C
    【解析】
    试题分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB<OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.
    解:∵四边形ABCD是平行四边形,
    ∴∠ABC=∠ADC=60°,∠BAD=120°,
    ∵AE平分∠BAD,
    ∴∠BAE=∠EAD=60°
    ∴△ABE是等边三角形,
    ∴AE=AB=BE,
    ∵AB=BC,
    ∴AE=BC,
    ∴∠BAC=90°,
    ∴∠CAD=30°,故①正确;
    ∵AC⊥AB,
    ∴S▱ABCD=AB•AC,故②正确,
    ∵AB=BC,OB=BD,且BD>BC,
    ∴AB<OB,故③错误;
    ∵CE=BE,CO=OA,
    ∴OE=AB,
    ∴OE=BC,故④正确.
    故选:C.
    4、C
    【解析】
    根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:由图可得,
    甲步行的速度为:240÷4=60米/分,故①正确,
    乙追上甲用的时间为:16-4=12(分钟),故②错误,
    乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故③正确,
    乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④正确,
    故选:C.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    5、D
    【解析】
    首先分别求出各个正多边形每个内角的度数,再结合镶嵌的条件作出判断.
    【详解】
    解:A项,正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴能密铺;
    B项,正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴能密铺;
    C项,正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,∴能密铺;
    D项,正五边形的每个内角是108°,正方形的每个内角是90°,∵90m+108n=360,,没有正整数解,∴此种情形不能密铺;
    故选D.
    本题考查了平面镶嵌的条件,解决此类问题,一般从正多边形的内角入手,围绕一个顶点处的所有内角之和是360°进行探究判断.
    6、C
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误.
    故选:C.
    本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、D
    【解析】
    先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
    【详解】
    解不等式组可求得:
    不等式组的解集是,
    故选D.
    本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
    8、B
    【解析】
    由锐角函数可求∠B的度数,可求∠DAB的度数,即可求解.
    【详解】
    如图,
    ∵四边形ABCD是菱形,菱形的周长为16,
    ∴AB=BC=CD=DA=4,
    ∵AE=2,AE⊥BC,
    ∴sin∠B=
    ∴∠B=30°
    ∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴∠DAB+∠B=180°,
    ∴∠DAB=150°,
    ∴菱形两邻角的度数比为150°:30°=5:1,
    故选:B.
    本题考查了菱形的性质,锐角三角函数,能求出∠B的度数是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、等腰梯形(答案不唯一)
    【解析】
    根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.
    【详解】
    是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等.
    故答案为:等腰梯形(答案不唯一).
    此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.
    10、x<-2
    【解析】
    观察函数图象得到当x<-2时,y=kx+2的图象位于y=mx-1的下方,即kx+2<mx-1.
    【详解】
    解:∵观察图象知当<>-2时,y=kx+2的图象位于y=mx-1的下方,
    根据图象可知不等式kx+2<mx-1的解集是x<-2,
    故答案为:x<-2.
    本题考查一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    11、-2<m<1
    【解析】
    解:由已知得:,
    解得:-2<m<1.
    故答案为:-2<m<1.
    12、.
    【解析】
    试题分析:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,
    ∵A2B1=A1B1=1,∴A2C1=2=,∴=,
    同理得:A3C2=4=,…,=,
    ∴=,
    故答案为.
    考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.
    13、-1
    【解析】
    先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.
    【详解】
    ∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.
    故答案为:-1.
    本题考查了函数值,解题的关键是掌握函数值的计算方法.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=,点C(6,1);(2).
    【解析】
    (1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,
    (2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.
    【详解】
    解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,
    ∴n=6,
    ∴点A(1,6)代入y=得,
    k=6,
    ∴反比例函数y=,
    当x=时,y=12,
    ∴点D(,12)代入直线l2:y=﹣2x+b得,
    b=13,
    ∴直线l2:y=﹣2x+13,
    由题意得:解得:,,
    ∴点C(6,1)
    答:反比例函数解析式y=,点C的坐标为(6,1).
    (2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)
    ∴S△OCD=S△BOE﹣S△BOD﹣S△OCE

    答:△OCD的面积为.
    本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.
    15、(1)y=;(2)①当0<x1<1时,y1>1,当x1<0时,y1<0;②p<q,见解析;(3)<m<3或-1<m<-
    【解析】
    (1)将点A,B的坐标代入反比例函数解析式中,联立方程组即可得出结论;
    (2)先得出反比例函数解析式,
    ①先得出x1=,再分两种情况讨论即可得出结论;
    ②先表示出y1=,y2=,进而得出p=,最后用作差法,即可得出结论;
    (3)先用m表示出x2=-1+,再求出点C坐标,进而用x2表示出S,再分两种情况用<S<1确定出x2的范围,即可得出-1+的范围,即可得出m的范围.
    【详解】
    解:(1)∵A(4,n)和B(n+,3)在反比例函数y=的图象上,
    ∴4n=3(n+)=m,
    ∴n=1,m=4,
    ∴反比例函数的表达式为y=;
    (2)∵m=1,
    ∴反比例函数的表达式为y=,
    ①如图1,∵B(x2,y2)在反比例函数y=的图象上,
    ∴y2=1,
    ∴B(1,1),
    ∵A(x1,y1)在反比例函数y=的图象上,
    ∴y1=,
    ∴x1=,
    ∵x1<x2,x2=1,
    ∴x1<1,
    当0<x1<1时,y1>1,
    当x1<0时,y1<0;
    ②p<q,理由:∵反比例函数y=的图象经过点A(x1,y1)和B(x2,y2),
    ∴y1=,y2=,
    ∴p===,
    ∵q=,
    ∴p-q=-==,
    ∵x1<x2<0,
    ∴(x1+x2)2>0,x1x2>0,x1+x2<0,
    ∴<0,
    ∴p-q<0,
    ∴p<q;
    (3)∵点B(x2,y2)在直线AB:y=x+2上,也在在反比例函数y=的图象上,
    ∴,解得,x=-1,
    ∵x1<x2,
    ∴x2=-1+
    ∵直线AB:y=x+2与y轴相交于点C,
    ∴C(0,2),
    当m>0时,如图2,
    ∵A(x1,y1)和B(x2,y2)(x1<x2),
    ∴点B的横坐标大于0,
    即:x2>0
    ∴S=OC•x2=×2×x2=x2,
    ∵<S<1,
    ∴<x2<1,
    ∴<-1+<1,
    ∴<m<3;
    当m<0时,如图3,∵A(x1,y1)和B(x2,y2)(x1<x2),
    ∴点B的横坐标小于0,
    即:x2<0
    ∴S=OC•|x2|=-×2×x2=-x2,
    ∵<S<1,
    ∴<-x2<1,
    ∴-1<x2<-,
    ∴-1<-1+<-,
    ∴-1<m<-,
    即:当<S<1时,m的取值范围为<m<3或-1<m<-.
    此题是反比例函数综合题,主要考查了待定系数法,作差法比较代数式大小的方法,不等式组的解法,用分类讨论的思想解决问题是解本题的关键.
    16、(1)张明:平均成绩80,方,60;王成:平均成绩80,中位,85,众,90;(2)王成;(3)张明学习成绩还需提高,优秀率有待提高.
    【解析】
    (1)根据平均数、中位数、众数、方差的概念以及求解方法分别求解,填表即可;
    (2)分别计算两人的优秀率,然后比较即可;
    (3)比较这两位同学的方差,方差越小,成绩越稳定.
    【详解】
    (1)张明的平均成绩=(80+70+90+80+70+90+70+80+90+80)÷10=80,
    张明的成绩的方差=[4×(80-80)2+3×(70-80)2+3×(90-80)2]÷10=60,
    王成的平均成绩=(80+60+100+70+90+50+90+70+90+100)÷10=80,
    王成的成绩按大小顺序排列为50、60、70、70、80、90、90、90、100、100,
    中间两个数为80,90,则张明的成绩的中位数为85,
    王成的成绩中90分出现的次数最多,则王成的成绩的众数为90,
    根据相关公式计算出结果,可以填得下表:
    (2)如果将90分以上(含90分)的成绩视为优秀,
    则张明的优秀率为:3÷10=30%,
    王成的优秀率为:5÷10=50%,
    所以优秀率较高的同学是王成,
    故答案为:王成;
    (3)尽管王成同学优秀率较高,但是方差大,说明成绩不稳定,我们可以给他提这样一条参考意见:王成的学习要持之以恒,保持稳定;
    相对而言,张明的成绩比较稳定,但是优秀率不及王成,我们可以给他提这样一条参考意见:张明同学的学习还需再加把劲,学习成绩还需提高,优秀率有待提高.
    本题考查了平均数,中位数与众数,方差,统计量的选择等知识,正确把握相关概念以及求解方法是解题的关键.
    17、x=2时,最小值是1.
    【解析】
    先提公因式,再根据“均值不等式”的性质计算.
    【详解】
    根据题意得:x= ,
    解得,x1=2,x2=-2(舍去),
    则当x=2时,代数式2x+取最小值,最小值是1.
    本题考查的是配方法的应用,掌握完全平方公式、“均值不等式”的概念是解题的关键.
    18、(1)点的坐标为;(2)见解析;(3)MN平分∠FMB成立,证明见解析
    【解析】
    (1)根据四边形OBCD是正方形所以点C的坐标应该是C(2,2);
    (2)可通过构建全等三角形来求解.在OD上取OH=OM,通过证三角形DHM和MBN全等来得出DM=MN.
    (3)本题也是通过构建全等三角形来求解的.在BO延长线上取OA=CF,通过三角形OAD,FDC和三角形DAM,DMF这两对全等三角形来得出FM和OM,CF的关系,从而得出FM是否是定值.然后再看∠FMN是否与∠NME相等.
    【详解】
    (1)∵四边形是正方形,,

    ∴点的坐标为
    (2)在OD上取OH=OM,连接HM,
    ∵OD=OB,OH=OM,
    ∴HD=MB,∠OHM=∠OMH,
    ∴∠DHM=180°−45°=135°,
    ∵NB平分∠CBE,
    ∴∠NBE=45°,
    ∴∠NBM=180°−45°=135°,
    ∴∠DHM=∠NBM,
    ∵∠DMN=90°,
    ∴∠DMO+∠NMB=90°,
    ∵∠HDM+∠DMO=90°,
    ∴∠HDM=∠NMB,
    在△DHM和△MBN中,

    ∴△DHM≌△MBN(ASA),
    ∴DM=MN.
    (3)MN平分∠FMB成立。证明如下:
    在BO延长线上取OA=CF,可证△DOA≌△DCF,△DMA≌△DMF,
    FM=MA=OM+CF(不为定值),∠DFM=∠DAM=∠DFC,
    过M作MP⊥DN于P,则∠FMP=∠CDF,
    由(2)可知∠NMF+∠FMP=∠PMN=45°,
    ∠NMB=∠MDH,∠MDO+∠CDF=45°,
    进一步得∠NMB=∠NMF,即MN平分∠FMB.
    此题考查角平分线的性质,正方形的性质,坐标与图形性质,全等三角形的判定与性质,解题关键在于作辅助线
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    试题分析:本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.
    考点:正比例函数的定义.
    20、
    【解析】
    根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.
    【详解】
    解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,
    由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,
    ∴∠MON=∠MOP+∠NOP=2∠AOB=90°,
    ∴△MON为等腰直角三角形.
    ∴MN=,
    所以△PQR周长的最小值为,
    故答案为:.
    此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.
    21、
    【解析】
    根据二次根式的定义即可求解.
    【详解】
    依题意写出一个二次根式为.
    此题主要考查二次根式的定义,解题的关键是熟知二次根式的特点.
    22、1或
    【解析】
    分①2是直角边,利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答;②2是斜边时,根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ①若2是直角边,则斜边=,
    斜边上的中线=,
    ②若4是斜边,则斜边上的中线=,
    综上所述,斜边上的中线长是1或.
    故答案为1或.
    本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,难点在于分情况讨论.
    23、x>-1.
    【解析】
    先移项,再合并同类项,化系数为1即可.
    【详解】
    移项得,2x>-5+3,
    合并同类项得,2x>-2,
    化系数为1得,x>-1.
    故答案为:x>-1.
    本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①60°;②45°;(2)见解析
    【解析】
    (1)连结AC,由条件可以得出△ABC为等边三角形,再由证△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出结论;
    (2)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AECF是平行四边形,就有AE∥CF,就可以得出∠EAC=∠FCA,就可以得出结论;
    (3)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,就有∠DCF=∠APD=45°,推出CF∥AE,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AFCE是平行四边形,就有AF=CE.
    【详解】
    (1)①如图1,连结AC,
    ∵AD=BE,BD=CE,
    ∴AD+BD=BE+CE,
    ∴AB=BC.
    ∵∠B=60°,
    ∴△ABC为等边三角形.
    ∴∠B=∠ACB=60°,BC=AC.
    在△CBD和△ACE中

    ∴△CBD≌△ACE(SAS),
    ∴∠BCD=∠CAE.
    ∵∠APD=∠CAE+∠ACD,
    ∴∠APD=∠BCD+∠ACD=60°.
    故答案为60°;
    ②如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,
    ∴∠FAD=90°.
    ∵∠B=90°,
    ∴∠FAD=∠B.
    在△FAD和△DBC中,

    ∴△FAD≌△DBC(SAS),
    ∴DF=DC,∠ADF=∠BCD.
    ∵∠BDC+∠BCD=90°,
    ∴∠ADF+∠BDC=90°,
    ∴∠FDC=90°,
    ∴∠FCD=45°.
    ∵∠FAD=90°,∠B=90,
    ∴∠FAD+∠B=180°,
    ∴AF∥BC.
    ∵DB=CE,
    ∴AF=CE,
    ∴四边形AECF是平行四边形,
    ∴AE∥CF,
    ∴∠EAC=∠FCA.
    ∵∠APD=∠ACP+∠EAC,
    ∴∠APD=∠ACP+∠ACE=45°;
    (2)如图3,作AF⊥AB于A,使AF=BD,连结DF,CF,
    ∴∠FAD=90°.
    ∵∠ABC=90°,
    ∴∠FAD=∠DBC=90°.
    在△FAD和△DBC中,

    ∴△FAD≌△DBC(SAS),
    ∴DF=DC,∠ADF=∠BCD.
    ∵∠BDC+∠BCD=90°,
    ∴∠ADF+∠BDC=90°,
    ∴∠FDC=90°,
    ∴∠FCD=45°.
    ∵∠APD=45°,
    ∴∠FCD=∠APD,
    ∴CF∥AE.
    ∵∠FAD=90°,∠ABC=90,
    ∴∠FAD=∠ABC,
    ∴AF∥BC.
    ∴四边形AECF是平行四边形,
    ∴AF=CE,
    ∴CE=BD.
    此题考查了全等三角形的判定与性质的运用,等边三角形的判定及性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.
    25、(1)A船:,B船:;(2)能追上;此时离海岸的距离为海里.
    【解析】
    (1)根据函数图象中的数据用待定系数法即可求出,的函数关系式;
    (2)根据(2)中的函数关系式求其函数图象交点可以解答本题.
    【详解】
    解:(1)由题意,设.
    ∵在此函数图像上,
    ∴,解得,
    由题意,设.
    ∵,在此函数图像上,
    ∴.
    解得,.∴.
    (2)由题意,得
    ,解得.
    ∵,∴能追上.此时离海岸的距离为海里.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
    26、
    【解析】
    连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第2015个菱形的边长.
    【详解】
    :连接DB,如图所示:
    ∵四边形ABCD是菱形,
    ∴AD=AB.AC⊥DB,
    ∵∠DAB=60°,
    ∴△ADB是等边三角形,
    ∴DB=AD=1,
    ∴BM=,
    ∴AM=,
    ∴AC=,
    同理可得AE=AC=()2,AG=AE=3=()3,
    按此规律所作的第n个菱形的边长为,
    则所作的第2019个菱形的边长为.
    故答案为:.
    此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力,解决本题的关键是发现规律.
    题号





    总分
    得分
    批阅人
    考试分数(分)
    20
    16
    12
    8
    人数
    24
    18
    5
    3
    姓名
    平均成绩
    中位数
    众数
    方差(s2)
    张明

    80
    80

    王成



    260
    姓名
    平均成绩
    中位数
    众数
    方差(s2)
    张明
    80
    80
    80
    60
    王成
    80
    85
    90
    260
    相关试卷

    2024-2025学年湖北省黄石市第八中学九上数学开学学业水平测试试题【含答案】: 这是一份2024-2025学年湖北省黄石市第八中学九上数学开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省黄石市大冶市数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖北省黄石市大冶市数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省黄石市富池片区2023-2024学年数学九上期末联考试题含答案: 这是一份湖北省黄石市富池片区2023-2024学年数学九上期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,下列事件是随机事件的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map