2024-2025学年湖北省武汉市武昌区拼搏联盟数学九上开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下列以线段a、b、c的长为边,能构成直角三角形的是( )
A.a=3,b=4,c=6B.a=5,b=6,c=7C.a=6,b=8,c=9D.a=7,b=24,c=25
2、(4分)下列命题中,是假命题的是( )
A.过边形一个顶点的所有对角线,将这个多边形分成个三角形
B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点
C.三角形的中线将三角形分成面积相等的两部分
D.一组对边平行另一组对边相等的四边形是平行四边形
3、(4分)已知反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是( )
A.m<0B.m>0C.m<D.m>
4、(4分)如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为( )cm2.
A.16-B.-12+C.8-D.4-
5、(4分)若一次函数y=kx+17的图象经过点(-3,2),则k的值为( )
A.-6 B.6 C.-5 D.5
6、(4分)如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )
A.6B.5C.4D.3
7、(4分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( )
A.4,1B.4,2C.5,1D.5,2
8、(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,在▱ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为 .
10、(4分)反比例函数经过点,则________.
11、(4分)如图,一架云梯长米,斜靠在一面墙上,梯子顶端离地面米,要使梯子顶端离地面米,则梯子的底部在水平面方向要向左滑动______米.
12、(4分)小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.
13、(4分)已知是一次函数,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.
15、(8分)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.
(1)求双曲线和直线的解析式;
(2)直接写出不等式的解集.
16、(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.
其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.
(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;
(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?
17、(10分)某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?
18、(10分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形ABCD中,两条对角线AC与BD的和是1.菱形的边AB=5,则菱形ABCD的面积是_____.
20、(4分)小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)
如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.
21、(4分)16的平方根是 .
22、(4分)反比例函数与一次函数图象的交于点,则______.
23、(4分)如图,甲、乙两名同学分别站在C、D的位置时,乙的影子与甲的影子的末端恰好在同一点,已知甲、乙两同学相距1m,甲身高1.8m,乙身高1.5m,则甲的影子是________m.
二、解答题(本大题共3个小题,共30分)
24、(8分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,,米,米,米,米.
(1)请你帮助管理人员计算出这个四边形对角线的长度;
(2)请用你学过的知识帮助管理员计算出这块空地的面积.
25、(10分)先化简,再求值: ,其中x=
26、(12分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.
故选D.
2、D
【解析】
根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.
【详解】
解:A、过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,所以A选项为真命题;
B、三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;
C、三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;
D、一组对边平行且相等的四边形是平行四边形,而一组对边平行另一组对边相等的四边形可以是梯形,所以D选项为假命题.
故选:D.
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
3、C
【解析】
试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故
,则1-2m>0,∴m>.
故选C.
考点:反比例函数图象上点的坐标特征.
4、B
【解析】
根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.
【详解】
∵两张正方形纸片的面积分别为16cm2和12cm2,
∴它们的边长分别为cm,
cm,
∴AB=4cm,BC=cm,
∴空白部分的面积=×4−12−16=+16−12−16= cm2.
故选B.
此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.
5、D
【解析】
由一次函数经过(-3,2),故将x=-3,y=2代入一次函数解析式中,得到关于k的方程,求出方程的解即可得到k的值.
【详解】
由一次函数y=kx+17的图象经过点(-3,2),
故将x=-3,y=2代入一次函数解析式得:2=-3k+17,
解得:k=1,
则k的值为1.
故选D.
此题考查了待定系数法求一次函数解析式,灵活运用待定系数法是解本题的关键.
6、C
【解析】
连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
【详解】
解:连接EG、FG,
EG、FG分别为直角△BCE、直角△BCF的斜边中线,
∵直角三角形斜边中线长等于斜边长的一半
∴EG=FG=BC=×10=5,
∵D为EF中点
∴GD⊥EF,
即∠EDG=90°,
又∵D是EF的中点,
∴,
在中,
,
故选C.
本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
7、B
【解析】
根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.
【详解】
数据1,3,4,4,4,5,5,6的众数是4,
,
则s2==2,
故选B.
本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.
8、A
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项正确;
B、是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项错误;
故选:A.
此题主要考查了中心对称图形的定义,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6cm.
【解析】
试题分析:由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.
解:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∵OE∥BC,
∴OE∥AD,
∴OE是△ACD的中位线,
∵OE=3cm,
∴AD=2OE=2×3=6(cm).
故答案为:6cm.
【点评】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.
10、3
【解析】
把点代入即可求出k的值.
【详解】
解:因为反比例函数经过点,
把代入,得.
故答案为:3
本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
11、
【解析】
如图,先利用勾股定理求出BC的长,再利用勾股定理求出CE的长,根据BE=BC-CE即可得答案.
【详解】
如图,AB=DE=10,AC=6,DC=8,∠C =90°,
∴BC==8,
CE==6,
∴BE=BC-CE=2(米),
故答案为2.
本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.
12、1.
【解析】
用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在图书馆停留2分钟,即x-2分钟所走的路程减去小亮从家到图书馆相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来
【详解】
解:小亮骑自行车的速度是2400÷10=240m/min;
先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:
(x-2)×240-2400=96x
240x-240×2-2400=96x
144x=2880
x=1.
答:小亮从家出发,经过1分钟,在返回途中追上爸爸.
此题考查一次函数的实际运用,根据图象,找出题目蕴含的数量关系,根据速度、时间、路程之间关系解决问题.
13、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.
【详解】
解;由y=(m-1)xm2−8+m+1是一次函数,得
,
解得m=-1,m=1(不符合题意的要舍去).
故答案为:-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
三、解答题(本大题共5个小题,共48分)
14、证明见解析
【解析】
由题意先证明△ADE≌△BAF,得出∠EDA=∠FAB,再根据∠ADE+∠AED=90°,推得∠FAE+∠AED=90°,从而证出AF⊥DE.
【详解】
解:∵四边形ABCD为正方形,
∴DA=AB,∠DAE=∠ABF=90°,
又∵AE=BF,
∴△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠FAE+∠AED=90°,
∴∠AGE=90°,
∴AF⊥DE.
本题考查正方形的性质;全等三角形的判定与性质.
15、(1)双曲线的解析式为,直线的解析式为y=﹣2x﹣4;(2)﹣3<x<0或x>1.
【解析】
(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,根据OC=6BC,且B在反比例图象上,设B坐标为(a,﹣6a),代入反比例解析式中求出a的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)根据一次函数与反比例函数的两交点A与B的横坐标,以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.
【详解】
(1)∵点A(﹣3,2)在双曲线上,
∴,解得m=﹣6,
∴双曲线的解析式为,
∵点B在双曲线上,且OC=6BC,
设点B的坐标为(a,﹣6a),
∴,解得:a=±1(负值舍去),∴点B的坐标为(1,﹣6),
∵直线y=kx+b过点A,B,
∴,解得:,
∴直线的解析式为y=﹣2x﹣4;
(2)根据图象得:不等式的解集为﹣3<x<0或x>1.
16、(1)y=10x+3000(65≤x≤75);(2)方案1:当0<a<10时,购进A种服装75件,B种服装25件;方案2:当a=10时,按哪种方案进货都可以;方案3:当10<a<20时,购进A种服装65件,B种服装35件.
【解析】
(1)根据题意可知购进A种服装为x件,则购进B种服装为(100-x),A、B两种服装每件的利润分别为40元、30元,据此列出函数关系式,然后再根据A种服装不少于65件且购进这100件服装的费用不得超过7500元,求出x的取值范围即可;
(2)根据题意列出含有a的一次函数解析式,再根据一次函数的性质求解即可.
【详解】
解:(1)∵80x+60(100﹣x)≤7500,
解得:x≤75,
∴y=40x+30(100﹣x)=10x+3000(65≤x≤75);
(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,
方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;
方案2:当a=10时,无论怎么购进,获利相同,所以按哪种方案进货都可以;
方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.
一次函数在实际生活中的应用是本题的考点,根据题意列出一次函数解析式并熟练掌握其性质是解题的关键.
17、70或80
【解析】
要求服装的单价,可设服装的单价为x元,则每件服装的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可;
【详解】
解:设单价应定为x元,根据题意得:
(x−50)[800−(x−60)÷5×100]=12000,
(x−50)[800−20x+1200]=12000,
整理得,x2−150x+5600=0,
解得=70,=80;
答:这种服装的单价应定为70元或80元.
本题主要考查了一元二次方程的应用,掌握一元二次方程的应用是解题的关键.
18、详见解析
【解析】
作∠DAB=∠ ,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.
【详解】
如图所示.
本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.
【详解】
如图,
∵四边形ABCD是菱形,
∴OA=AC,OB=BD,AC⊥BD,
在Rt△AOB中,∠AOB=90°,
根据勾股定理,得:OA2+OB2=AB2,
即(AC+BD)2﹣AC•BD=AB2,
×12﹣AC•BD=52,
AC•BD=48,
故菱形ABCD的面积是48÷2=2.
故答案为:2.
本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.
20、1.
【解析】
根据表格中的数据可以计算出小明家全年通话时间不超过5min的次数,本题得以解决.
【详解】
由题意可得,
小明家全年通话时间不超过5min约为:1000×=1(次),
故答案为:1.
本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
21、±1.
【解析】
由(±1)2=16,可得16的平方根是±1.
22、-1
【解析】
试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.
考点:待定系数法求反比例函数解析式
23、1
【解析】
解:设甲的影长是x米,
∵BC⊥AC,ED⊥AC,
∴△ADE∽△ACB,
∴,
∵CD=1m,BC=1.8m,DE=1.5m,
∴,
解得:x=1.
所以甲的影长是1米.
故答案是1.
考点:相似三角形的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)25米;(2)234米2
【解析】
(1)连接,利用勾股定理求出AC即可;
(2)利用勾股定理的逆定理证明∠ADC=90°,计算两个直角三角形面积即可解决问题
【详解】
(1)连接.在中,由勾股定理得:
(米).
(2)在中,∵,
∴.
∴ (米2).
本题考查勾股定理及其逆定理的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25、,
【解析】
将原式进行因式分解化成最简结果,将x代入其中,计算得到结果.
【详解】
解:原式=
=
=
因为x= ,所以原式= .
考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
26、2400元
【解析】
试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.
试题解析:连结AC,
在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),
∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,
该区域面积S=S△ACB﹣S△ADC=×5×12﹣×3×4=24(平方米),
即铺满这块空地共需花费=24×100=2400元.
考点:1.勾股定理;2.勾股定理的逆定理.
题号
一
二
三
四
五
总分
得分
批阅人
服装
进价(元/件)
售价(元/件)
A
80
120
B
60
90
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
2023-2024学年湖北省武汉市武昌区拼搏联盟七年级(下)期中数学试卷(含解析): 这是一份2023-2024学年湖北省武汉市武昌区拼搏联盟七年级(下)期中数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年湖北省武汉市武昌区拼搏联盟九年级数学第一学期期末学业质量监测试题含答案: 这是一份2023-2024学年湖北省武汉市武昌区拼搏联盟九年级数学第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了如图所示的几何体的俯视图是等内容,欢迎下载使用。
2023-2024学年湖北省武汉市武昌区拼搏联盟八上数学期末复习检测试题含答案: 这是一份2023-2024学年湖北省武汉市武昌区拼搏联盟八上数学期末复习检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,,是的中点,若,,则等于,若,则分式等于等内容,欢迎下载使用。