2024-2025学年湖北省襄阳市保康县数学九上开学联考模拟试题【含答案】
展开
这是一份2024-2025学年湖北省襄阳市保康县数学九上开学联考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解方程,经过配方,得到()
A.B.C.D.
2、(4分)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )
A.2~4小时B.4~6小时C.6~8小时D.8~10小时
3、(4分)估计的值在下列哪两个整数之间( )
A.6和7之间B.7和8之间C.8和9之间D.无法确定
4、(4分) “的3倍与3的差不大于8”,列出不等式是( )
A.B.
C.D.
5、(4分)一次函数y=3x-2的图象不经过( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、(4分)八年级某同学6次数学小测验的成绩分别为95分,80分,85分,95分,95分,85分,则该同学这6次成绩的众数和中位数分别是( )
A.95分,95分B.95分,90分C.90分,95分D.95分,85分
7、(4分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,如图是购买甲、乙两家商场该商品的实际金额、(元)与原价(元)的函数图象,下列说法正确的是( )
A.当时,选甲更省钱B.当时,甲、乙实际金额一样
C.当时,选乙更省钱D.当时,选甲更省钱
8、(4分)下列二次根式中属于最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.
10、(4分)已知关于x的方程ax-5=7的解为x=1,则一次函数y=ax-12与x轴交点的坐标为________.
11、(4分)比较大小:_____1.(填“>”、“=”或“<”)
12、(4分)已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为_____.
13、(4分)如图所示,数轴上点A所表示的数为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
15、(8分)如图,在平面直角坐标系中,一次函数(,、为常数)的图象与反比例函数的图象交于第二、四象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为-1.
(1)求一次函数的解析式;(2)连接、,求的面积.
16、(8分)已知一次函数y=(1m-1)x+m-1.
(1)若此函数图象过原点,则m=________;
(1)若此函数图象不经过第二象限,求m的取值范围.
17、(10分)阅读下列题目的解题过程:
已知为的三边,且满足,试判断的形状.
解:∵ ①
∴ ②
∴ ③
∴是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)该步正确的写法应是: ;
(3)本题正确的结论为: .
18、(10分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为 1 个单位长度.
(1)画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1 的坐标;
(2)将△ABC 绕点 C 顺时针旋转 90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A 所经过的路径长
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.
20、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.
21、(4分)给出下列3个分式:,它们的最简公分母为__________.
22、(4分)已知一次函数()经过点,则不等式的解集为__________.
23、(4分)如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,的对角线、相交于点,对角线绕点逆时针旋转,分别交边、于点、.
(1)求证:;
(2)若,,.当绕点逆时针方向旋转时,判断四边形的形状,并说明理由.
25、(10分)如图所示,在正方形中,是上一点,是延长线上一点,且,连接,.
(1)求证:;
(2)若点在上,且,连接,求证:.
26、(12分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线AC、BD的交点,且∠CAE=15° .
(1)求证:△AOB为等边三角形;
(2)求∠BOE度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.
【详解】
x2+3x+1=0,
x2+3x=-1,
x2+3x+=-1+,
,
故选B.
本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键.
2、B
【解析】
试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.
由条形统计图可得,人数最多的一组是4~6小时,频数为22,
考点:频数(率)分布直方图
3、B
【解析】
先判断在2和3之间,然后再根据不等式的性质判断即可.
【详解】
解:,
∵2<<3,
∴7<10﹣<8,
即的值在7和8之间.
故选B.
无理数的估算是本题的考点,判断出在2和3之间时解题的关键.
4、A
【解析】
直接利用已知得出3x-3小于等于1即可.
【详解】
根据题意可得:3x-3≤1.
故选A.
此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.
5、B
【解析】
因为k=3>0,b= -2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第一、三象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=3x-2的图象不经过第
二象限.
【详解】
对于一次函数y=3x-2,
∵k=3>0,
∴图象经过第一、三象限;
又∵b=-2<0,
∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第四象限,
∴一次函数y=3x-2的图象不经过第二象限.
故选B.
本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.
6、B
【解析】
根据题目中的数据,可以得到这组数据的众数和中位数,本题得以解决.
【详解】
解:将这6位同学的成绩从小到大排列为80、85、85、95、95、95,
由于95分出现的次数最多,有3次,即众数为95分,
第3、4个数的平均数为:=90,即中位数为90分,
故选:B.
本题考查众数、中位数,解答本题的关键是明确众数、中位数的定义,会求一组数据的众数、中位数.
7、D
【解析】
根据函数图象和图象中的数据可知原价 时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当 时函数在上方,花费较贵,故甲商场较划算
【详解】
据函数图象和图象中的数据可知原价 时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当 时函数在上方,花费较贵,故甲商场较划算
A. 当时,选乙更省钱,故A选项错误;
B. 当时,选乙更省钱,故B选项错误;
C. 当时,甲、乙实际金额一样,故C选项错误;
D. 当时,选甲更省钱,故D选项正确;
故答案为:D
本题考查了一次函数与方案选择问题,能够正确看懂函数图像,进行选择方案是解题的关键.
8、D
【解析】
解:A.=,不是最简二次根式,故A错误;
B.=6,不是最简二次根式,故B错误;
C.,根号内含有分母,不是最简二次根式,故C错误;
D.是最简二次根式,故D正确.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8.4.
【解析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x, 再求出∠BCG=30°,BG=BC=3, 由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.
【详解】
解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,
∴AE=CE
设AE=x,则CE=x,EB=12-x,
∵AD=6,∠A=60°,
∴BC=6, ∠CBG=60°,
∴∠BCG=30°,
∴BG=BC=3,
在△BCG中,由勾股定理可得:
∴EG=EB+BG=12-x+3=15-x
在△CEG中,由勾股定理可得:
解得:
故答案为:8.4
本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.
10、 (1,0)
【解析】
试题解析:∵x=1是关于x的方程ax-5=7的解,
∴a-5=7,
解得a=12,
∴一次函数y=ax-12可整理为y=12x-12.
令y=0,得到:12x-12=0,
解得x=1,
则一次函数图象与x轴的交点坐标是(1,0).
故答案为(1,0).
11、>.
【解析】
【分析】先求出1=,再比较即可.
【详解】∵12=9<10,
∴>1,
故答案为:>.
【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.
12、y=﹣3x
【解析】
设函数解析式为y=kx,把点(-1,3)代入利用待定系数法进行求解即可得.
【详解】
设函数解析式为y=kx,把点(-1,3)代入得
3=-k,
解得:k=-3,
所以解析式为:y=-3x,
故答案为y=-3x.
本题考查了利用待定系数法求函数解析式,熟练掌握待定系数法是解题的关键.
13、
【解析】
首先计算出直角三角形斜边的长,然后再确定点A所表示的数.
【详解】
∵,∴点A所表示的数1.
故答案为:.
本题考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析(2)成立
【解析】
试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
试题解析:(1)在正方形ABCD中,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
∵∠GCE=∠GCF, GC=GC
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
考点:1.正方形的性质;2.全等三角形的判定与性质.
15、(1);(2).
【解析】
(1)利用待定系数法求得反比例函数的解析式,即可得出点B的坐标,再求出一次函数的解析式即可;(2)利用一次函数求得C点坐标,再根据割补法即可得出△AOB的面积.
【详解】
(1)解:∵,,
∴点的坐标为,
则,
得.
∴反比例函数的解析式为,
∵点的纵坐标是-1,
∴,得.
∴点的坐标为.
∵一次函数的图象过点、点.
∴,
解得:,
即直线的解析式为.
(2)∵与轴交与点,
∴点的坐标为,
∴,
∴
.
本题考查了反比例函数与一次函数的交点问题,把两个函数关系式联立方程求解,若方程有解则有交点,反之无交点.
16、(1)1;(1)-<m≤1.
【解析】
(1)把坐标原点代入函数解析式进行计算即可得解;
(1)根据图象不在第二象限,k>0,b0列出不等式组求解即可.
【详解】
(1)∵函数的图象经过原点,
∴m-1=0,
解得m=1;
(1)∵函数的图象不过第二象限,
∴,
由①得,m>-,
由②得,m1,
所以,-<m1.
本题考查了两直线平行的问题,一次函数与系数的关系,一次函数图象上点的坐标特征,综合题但难度不大,熟记一次函数的性质是解题的关键.
17、故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.
【解析】
(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;
(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;
(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
【详解】
(1)上述解题过程,从第③步开始出现错误;
(2)正确的写法为:c (a−b)=(a+b)(a−b),
移项得:c (a−b)−(a+b)(a−b)=0,
因式分解得:(a−b)[c−(a+b)]=0,
则当a−b=0时,a=b;当a−b≠0时,a+b=c;
(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。
故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形
此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.
18、 (1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为
【解析】
(1)根据网格结构找出点A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;
(2)根据网格结构找出点A、B绕点C顺时针旋转90°的对应点A2、B2的位置,然后顺次连接即可;利用勾股定理列式求出AC,再根据弧长公式列式计算即可得解.
【详解】
解:(1)△A1B1C1如图所示,A1(2,-4);
(2)△A2B2C如图所示,由勾股定理得,AC==,
点A所经过的路径长:l .
故答案为:(1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为.
本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.
【详解】
解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得: ,
解得: ,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.
吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.
20、9
【解析】
∵四边形ABCD是矩形,
∴∠ABC=90°,BD=AC,BO=OD,
∵AB=6cm,BC=8cm,
∴由勾股定理得: (cm),
∴DO=5cm,
∵点E. F分别是AO、AD的中点,
(cm),
故答案为2.5.
21、a2bc.
【解析】
解:观察得知,这三个分母都是单项式,确定这几个分式的最简公分母时,相同字母取次数最高的,不同字母连同它的指数都取着,系数取最小公倍数,所以它们的最简公分母是a2bc.
故答案为:a2bc.
考点:分式的通分.
22、
【解析】
先把(-1,0)代入y=kx+b得b=k,则k(x-3)+b<0化为k(x-3)+k<0,然后解关于x的不等式即可.
【详解】
解:把(-1,0)代入y=kx+b得-k+b=0,解b=k,
则k(x-3)+b<0化为k(x-3)+k<0,
而k<0,
所以x-3+1>0,
解得x>1.
故答案为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、①④
【解析】
矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)平行四边形DEBF是菱形,证明见解析.
【解析】
(1)由“ASA”可证△COE≌△AOF,可得CE=AF;
(2)由勾股定理的逆定理可证∠DBC=90°,通过证明四边形DEBF是平行四边形,可得DO=BO=1=BC,可得∠BOC=45°,由旋转的性质可得∠EOC=45°,可得EF⊥BD,即可证平行四边形DEBF是菱形.
【详解】
证明:(1)∵四边形ABCD是平行四边形
∴CD∥AB,AO=CO,AB=CD
∴∠DCO=∠BAO,且AO=CO,∠AOF=∠COE
∴△COE≌△AOF(ASA)
∴CE=AF,
(2)四边形BEDF是菱形
理由如下
如图,连接DF,BE,
∵DB=2,BC=1,
∴DB2+BC2=5=CD2,
∴∠DBC=90°
由(1)可得AF=CE,且AB=CD
∴DE=BF,且DE∥BF
∴四边形DEBF是平行四边形
∴DO=BO=1,
∴OB=BC=1,且∠OBC=90°
∴∠BOC=45°,
∵当AC绕点O逆时针方向旋转45°时
∴∠EOC=45°
∴∠EOB=90°,即EF⊥BD
∴平行四边形DEBF是菱形
本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,证明∠DBC=90°是本题的关键.
25、(1)详见解析;(2)详见解析.
【解析】
(1)由正方形的性质得到,,求得,根据全等三角形的判定和性质定理即可得到结论;
(2)根据全等三角形的性质得到,根据线段的和差即可得到结论.
【详解】
证明(1)在正方形中,
∵,
又∵
∴
∴
(2)∵
∴
又∵
∴
在和△中
∵ 又由(1)知
∴
∴
又∵
∴
本题考查了正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
26、(1)见解析;(2)75°
【解析】
试题分析:(1)因为四边形ABCD是矩形,所以OA=OB,则只需求得∠BAC=60°,即可证明三角形是等边三角形;
(2)因为∠B=90°,∠BAE=45°,所以AB=BE,又因为△ABO是等边三角形,则∠OBE=30°,故∠BOE度数可求.
(1)证明:∵四边形ABCD是矩形
∴∠BAD=∠ABC=90°,AO=BO=AC=BD
∵AE是∠BAD的角平分线;
∴∠BAE=45°
∵∠CAE=15°
∴∠BAC=60°
∴△AOB是等边三角形;
(2)解:∵在Rt△ABE中,∠BAE=45°
∴AB=BE
∵△ABO是等边三角形
∴AB=BO
∴OB=BE
∵∠OBE=30°,OB=BE,
∴∠BOE=(180°﹣30°)=75°.
题号
一
二
三
四
五
总分
得分
批阅人
弹簧总长L(cm)
16
17
18
19
20
重物质量x(kg)
0.5
1.0
1.5
2.0
2.5
相关试卷
这是一份2024-2025学年湖北省武汉二中学九上数学开学联考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省天门天宜国际学校数学九上开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。