2024-2025学年湖北宜昌九上数学开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知反比例函数,则下列结论正确的是( )
A.其图象分别位于第一、三象限
B.当时,随的增大而减小
C.若点在它的图象上,则点也在它的图象上
D.若点都在该函数图象上,且,则
2、(4分)某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( )
A.学一样
B.成绩虽然一样,但方差大的班里学生学习潜力大
C.虽然平均成绩一样,但方差小的班学习成绩稳定
D.方差较小的班学习成绩不稳定,忽高忽低
3、(4分)某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是( )
A.直接观察B.查阅文献资料C.互联网查询D.测量
4、(4分)已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是
A.1B.2C.3D.4
5、(4分)已知四边形是平行四边形,下列结论中正确的个数有( )
①当时,它是菱形;②当时,它是菱形;③当时,它是矩形;④当时,它是正方形.
A.4B.3C.2D.1
6、(4分)如图,长方形的高为,底面长为 ,宽为,蚂蚁沿长方体表面,从点到(点 见图中黑圆点)的最短距离是( )
A.B.C.D.
7、(4分)如图:菱形ABCD的对角线AC,BD相交于点O,AC= ,BD=,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是( )
A.B.或C.D.不存在
8、(4分)如图,在中,分别以点A,C为圆心,大于长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若,,则的周长是( )
A.7B.8C.9D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.
10、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
11、(4分)平行四边形ABCD中,若,=_____.
12、(4分) 若关于x的一元一次不等式组无解,则a的取值范围是_____.
13、(4分)如图,在中,,且把的面积三等分,那么_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校计划在总费用元的限额内,租用汽车送名学生和名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
(1)根据题干所提供的信息,确定共需租用多少辆汽车?
(2)请你给学校选择一种最节省费用的租车方案.
15、(8分)已知:如图,在△ABC中,D是AC上一点,,△BCD的周长是24cm.
(1)求△ABC的周长;
(2)求△BCD与△ABD的面积比.
16、(8分)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.
(1)把统计图补充完整;
(2)直接写出这组数据的众数和中位数;
(3)若该校共有学生1600人,请根据该班的捐款情况估计该校捐款金额为20元的学生人数.
17、(10分)根据下列条件分别确定函数y=kx+b的解析式:
(1)y与x成正比例,当x=5时,y=6;
(2)直线y=kx+b经过点(3,6)与点(2,-4).
18、(10分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
设购买银杏树苗x棵,到两家购买所需费用分别为元、元
(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
(2)当时,分别求出、与x之间的函数关系式;
(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是_____.
20、(4分)图1是一个地铁站人口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为______
21、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步先假设所求证的结论不成立,即问题表述为______.
22、(4分)如图,将一边长为的正方形纸片的顶点折叠至边上的点,使,折痕为,则的长__________.
23、(4分)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.
(1)求证:DE=AF;
(2)若AB=4,BG=3,求AF的长;
(3)如图2,连接DF、CE,判断线段DF与CE的位置关系并证明.
25、(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程
解:设x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)该同学第二步到第三步运用了因式分解的 (填序号).
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 .
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
26、(12分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据反比例函数图象上点的坐标特征、反比例函数的性质解答.
【详解】
解:反比例比例系数的正负决定其图象所在象限,当时图象在第一、三象限;当时图象在二、四象限,由题可知,所以A错误;
当时,反比例函数图象在各象限内随的增大而减小;当时,反比例函数图象在各象限内随的增大而增大,由题可知,当时,随的增大而增大,所以B错误;
比例系数:如果任意一点在反比例图象上,则该点横纵坐标值的乘积等于比例系数,因为点在它的图象上,所以,又因为点的横纵坐标值的乘积,所以点也在函数图象上,故C正确
当时,反比例函数图象在各象限内随的增大而增大,由题可知,所以当时,随的增大而增大,而D选项中的并不确定是否在同一象限内,所以的大小不能粗糙的决定!所以D错误;
故选:C
本题考查了反比例函数的性质,熟悉反比例函数的图象和性质是解题的关键.
2、C
【解析】
分析:由题意知数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,选择学生参加考试时,还要选方差较小的学生.
解答:解:∵数学成绩的平均分相等,但他们成绩的方差不等,
数学的平均成绩一样,说明甲和乙的平均水平基本持平,
方差较小的同学,数学成绩比较稳定,
故选C.
3、D
【解析】
本题考查的是调查收集数据的过程与方法
根据八某校年级(3)班体训队员的身高即可判断获得这组数据的方法.
由题意得,获得这组数据方法是测量,故选D.
思路拓展:解答本题的关键是掌握好调查收集数据的过程与方法.
4、C
【解析】
根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.
【详解】
一次函数经过第一、二、四象限,
,,所以①正确;
直线的图象与轴交于负半轴,
,,所以②错误;
一次函数与的图象的交点的横坐标为2,
时,,所以③正确;
当时,,所以④正确.
故选.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.
5、B
【解析】
根据特殊平行四边形的判定即可判定.
【详解】
四边形是平行四边形,①当时,邻边相等,故为菱形,正确;
②当时,对角线垂直,是菱形,正确;③当时,有一个角为直径,故为矩形,正确;④当时,对角线相等,故为矩形,故错误,
由此选B.
此题主要考查特殊平行四边形的判定,解题的关键是熟知特殊平行四边形的判定定理.
6、D
【解析】
分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)
根据他们相应的展开图分别计算比较:
图①:;
图②:;
图③:.
∵.
故应选D.
点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.
7、A
【解析】
根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S1的方法不同,因此需分情况讨论,由S1=S1和S1+S1=8可以求出S1=S1=2.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.
【详解】
①当点P在BO上,0<x≤1时,如图1所示.
∵四边形ABCD是菱形,AC=2,BD=2,
∴AC⊥BD,BO=BD=1,AO=AC=1,
且S菱形ABCD=BD•AC=8.
∴tan∠ABO==.
∴∠ABO=60°.
在Rt△BFP中,
∵∠BFP=90°,∠FBP=60°,BP=x,
∴sin∠FBP=.
∴FP=x.
∴BF=.
∵四边形PFBG关于BD对称,
四边形QEDH与四边形PEBG关于AC对称,
∴S△BFP=S△BGP=S△DEQ=S△DHQ.
∴S1=2S△BFP
=2××x•
=x1.
∴S1=8-x1.
②当点P在OD上,1<x≤2时,如图1所示.
∵AB=2,BF=,
∴AF=AB-BF=2.
在Rt△AFM中,
∵∠AFM=90°,∠FAM=30°,AF=2-.
∴tan∠FAM=.
∴FM=(2-).
∴S△AFM=AF•FM
=(2-)•(2-)
=(2-)1.
∵四边形PFBG关于BD对称,
四边形QEDH与四边形FPBG关于AC对称,
∴S△AFM=S△AEM=S△CHN=S△CGN.
∴S1=2S△AFM
=2×(2-)1
=(x-8)1.
∴S1=8-S1=8-(x-8)1.
综上所述:
当0<x≤1时,S1=x1,S1=8-x1;
当1<x≤2时,S1=8-(x-8)1,S1=(x-8)1.
当点P在BO上时,0<x≤1.
∵S1=S1,S1+S1=8,
∴S1=2.
∴S1=x1=2.
解得:x1=1,x1=-1.
∵1>1,-1<0,
∴当点P在BO上时,S1=S1的情况不存在.
当点P在OD上时,1<x≤2.
∵S1=S1,S1+S1=8,
∴S1=2.
∴S1=(x-8)1=2.
解得:x1=8+1,x1=8-1.
∵8+1>2,1<8-1<2,
∴x=8-1.
综上所述:若S1=S1,则x的值为8-1.
故选A.
本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.
8、A
【解析】
利用基本作图得到MN垂直平分AC,如图,则DA=DC,然后利用等线段代换得到△ABD的周长=AB+BC.
【详解】
解:由作法得MN垂直平分AC,如图,
∴DA=DC,
∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.
故选:A.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、9
【解析】
根据题意先证△ABD≌△GBD,得出AB=BG,D为AG中点,再由E为AC中点,根据中位线的性质即可求解.
【详解】
∵BF平分∠ABC,∴∠ABD=∠GBD,
∵AG⊥BF,∴∠BDG=∠BDA,
又BD=BD,∴△ABD≌△GBD
∴BG=AB=4cm,AD=GD,
故D为AG中点,又E为AC中点
∴GC=2DE=5cm,
∴BC=BG+GC=9cm.
此题主要考查线段的长度求解,解题的关键是熟知全等三角形的判定与中位线的性质.
10、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
11、120°
【解析】
根据平行四边形对角相等求解.
【详解】
平行四边形ABCD中,∠A=∠C,又,
∴∠A=120°,
故填:120°.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
12、
【解析】
解不等式组可得 ,因不等式组无解,所以a≥1.
13、
【解析】
根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.
【详解】
将的面积三等分,
设的面积分别为
,
,
,
,
故答案为:.
本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)确定共需租用6辆汽车;(2)最节省费用的租车方案是租用甲种客车辆,乙种客车辆.
【解析】
(1)首先根据总人数个车座确定租用的汽车数量,关键要注意每辆汽车上至少要有名教师.
(2)根据题意设租用甲种客车辆,共需费用元,则租用乙种客车辆,因此可列出方程,再利用不等式列出不等式组,即可解得x的范围,在分类计算费用,选择较便宜的.
【详解】
解:(1)由使名学生和名教师都有座位,租用汽车辆数必需不小于辆;每辆汽车上至少要有名教师,租用汽车辆数必需不大于6辆.
所以,根据题干所提供的信息,确定共需租用6辆汽车.
(2)设租用甲种客车辆,共需费用元,则租用乙种客车辆.
6辆汽车载客人数为人
=
∴
解得
∴,或
当时,甲种客车辆,乙种客车辆,
当时,甲种客车辆,乙种客车辆,
∴最节省费用的租车方案是租用甲种客车辆,乙种客车辆.
本题主要考查不等式组的应用问题,关键在于根据题意设出合理的未知数,特别注意,要取整数解,确定利润最小.
15、 (1)36cm;(2)
【解析】
试题分析:(1)根据相似三角形的周长的比等于相似比进行计算即可;
(2)根据相似三角形的面积的比等于相似比的平方进行计算即可.
试题解析:(1) ∵,
∴∽
∴
∵的周长是cm
∴的周长是
(2) ∵∽
∴
∴
16、(1)见解析;(2)中位数为20元、众数为20元;(3)608人.
【解析】
(1)求得捐款金额为30元的学生人数,把统计图补充完整即可.
(2)根据中位数和众数的定义解答;
(3)根据该校共有学生1600人乘以捐款金额为20元的学生人数所占的百分数即可得到结论.
【详解】
解:(1)捐款金额为30元的学生人数人,
把统计图补充完整如图所示;
(2)数据总数为50,所以中位数是第25、26位数的平均数,即元,
数据20出现了19次,出现次数最多,所以众数是20元;
(3)人,
答:该班的捐款情况估计该校捐款金额为20元的学生人数约为608人.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了平均数、中位数、众数的知识.
17、(1);(2).
【解析】
(1)先根据正比例函数的定义可得,再利用待定系数法即可得;
(2)直接利用待定系数法即可得.
【详解】
(1)y与x成正比例
又当时,
解得
则;
(2)由题意,将点代入得:
解得
则.
本题考查了利用待定系数法求正比例函数和一次函数的解析,掌握待定系数法是解题关键.
18、 (1)610000元,640000元;(2),;(3)见解析.
【解析】
(1)由单价数量及可以得出购买树苗需要的费用;
(2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;
(3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.
【详解】
解:由题意,得.
元,
元;
故答案为;640000
当时,,,x为正整数,
当时,到两家购买所需费用一样;
时,甲家有优惠而乙家无优惠,所以到甲家购买合算;
当时,,解得,当时,到两家购买所需费用一样;
当y甲乙时,,
当时,到甲家购买合算;
当y甲乙时,,
当时,到乙家购买合算.
综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、∠B=∠D=60°
【解析】
由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.
【详解】
解:添加条件∠B=∠D=60°,
∵∠A=∠C=120°,∠B=∠D=60°,
∴∠A+∠B=180°,∠C+∠D=180°
∴AD∥CB,AB∥CD,
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
故答案是:∠B=∠D=60°.
考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.
20、
【解析】
过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,根据含30度角的直角三角形的性质即可求出AE与BF的长度,然后求出EF的长度即可得出答案.
【详解】
解:过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,
∵AC=56,∠PCA=30°,
由对称性可知:BF=AE,
∴通过闸机的物体最大宽度为2AE+AB=56+10=66;
故答案为:66cm.
本题考查解直角三角形,解题的关键是熟练运用含30度的直角直角三角形的性质,本题属于基础题型.
21、假设在直角三角形中,两个锐角都大于45°.
【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.
【详解】
∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.
此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤. 反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.
22、1
【解析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△AED,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△AED
∴PQ=AE==1.
故答案是:1.
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
23、>
【解析】
分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,
∴y1=-3,y1=-6,
∵-3>-6,
∴y1>y1.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2) ;(3)DF⊥CE;证明见解析.
【解析】
(1)先判断出∠AED=∠BFA=90°,再判断出∠BAF=∠ADE,进而利用“角角边”证明△AFB和△DEA全等,即可得出结论;
(2)先求出AG,再判断出△ABF∽△AGB,得出比例式即可得出结论;
(3)先判断出AD=CD,然后利用“边角边”证明△FAD和△EDC全等,得出∠ADF=∠DCE,即可得出结论.
【详解】
解:(1)∵DE⊥AG,BF∥DE,
∴BF⊥AG,
∴∠AED=∠BFA=90°,
∵四边形ABCD是正方形,
∴AB=AD且∠BAD=∠ADC=90°,
∴∠BAF+∠EAD=90°,
∵∠EAD+∠ADE=90°,
∴∠BAF=∠ADE,
在△AFB和△DEA中,
,
∴△AFB≌△DEA(AAS),
∴AF=DE;
(2)在Rt△ABG中,AB=4,BG=3,根据勾股定理得,AG=5,
∵BF⊥AG,
∴∠AFB=∠ABG=90°,
∵∠BAF=∠GAB,
∴△ABF∽△AGB,
∴,
即,
∴AF=;
(3)DF⊥CE,理由如下:
∵∠FAD+∠ADE=90°,∠EDC+∠ADE=∠ADC=90°,
∴∠FAD=∠EDC,
∵△AFB≌△DEA,
∴AF=DE,
又∵四边形ABCD是正方形,
∴AD=CD,
在△FAD和△EDC中,
,
∴△FAD≌△EDC(SAS),
∴∠ADF=∠DCE,
∵∠ADF+∠CDF=∠ADC=90°,
∴∠DCE+∠CDF=90°,
∴DF⊥CE.
本题是四边形综合题,涉及了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相关的性质与定理是解本题的关键.
25、(1)C;(2)否,(x﹣2)1;(3)(x2﹣2x)(x2﹣2x+2)+1=(x﹣1)1.
【解析】
(1)根据分解因式的过程直接得出答案;
(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;
(3)将看作整体进而分解因式即可.
【详解】
(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;
故选:C;
(2)这个结果没有分解到最后,
原式=(x2﹣1x+1)2=(x﹣2)1;
故答案为:否,(x﹣2)1;
(3)设为x2﹣2x=t,
则原式=t(t+2)+1
=t2+2t+1
=(t+1)2
=(x2﹣2x+1)2
=(x﹣1)1.
此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.
26、(1)参加此次研学活动的老师有16人,学生有234人.(2)1;(3)学校共有4种租车方案,最少租车费用是2元.
【解析】
(1)设参加此次研学活动的老师有人,学生有人,根据题意列出方程组即可求解;
(2)利用租车总辆数=总人数÷35,再结合每辆车上至少要有2名老师,即可求解;
(3)设租35座客车辆,则需租30座的客车辆,根据题意列出不等式组即可求解.
【详解】
解:(1)设参加此次研学活动的老师有人,学生有人,
依题意,得:,
解得:.
答:参加此次研学活动的老师有16人,学生有234人.
(2)(辆)(人),(辆),
租车总辆数为1辆.
故答案为:1.
(3)设租35座客车辆,则需租30座的客车辆,
依题意,得:,
解得:.
为正整数,
,
共有4种租车方案.
设租车总费用为元,则,
,
的值随值的增大而增大,
当时,取得最小值,最小值为2.
学校共有4种租车方案,最少租车费用是2元.
本题考查的是二元一次方程组和不等式组的实际应用,熟练掌握两者是解题的关键.
题号
一
二
三
四
五
总分
得分
甲型客车
乙型客车
载客量(人/辆)
35
30
租金(元/辆)
400
320
2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】: 这是一份2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。