2024-2025学年湖南省师范大附属中学九年级数学第一学期开学复习检测模拟试题【含答案】
展开
这是一份2024-2025学年湖南省师范大附属中学九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
A.B.
C.D.
2、(4分)一元二次方程根的情况为( )
A.有两个相等的实数根B.有两个正实数根
C.有两个不相等的实数根D.有两个负实数根
3、(4分)如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于( )
A.B.C.D.
4、(4分)如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④ ,其中正确的是( )
A.①②B.①④C.①②④D.①②③④
5、(4分)如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为( )
A.5B.4C.3D.2
6、(4分)下面各组变量的关系中,成正比例关系的有( )
A.人的身高与年龄
B.买同一练习本所要的钱数与所买本数
C.正方形的面积与它的边长
D.汽车从甲地到乙地,所用时间与行驶速度
7、(4分)如图,矩形中,,,、分别是边、上的点,且与之间的距离为4,则的长为( )
A.3B.C.D.
8、(4分)如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是( )
A.x<0B.x<1C.0<x<1D.x>1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,和的角平分线相交于点,若,则的度数为______.
10、(4分)函数y=中,自变量x的取值范围是______.
11、(4分)若是正比例函数,则的值为______.
12、(4分)若反比例函数y=(2k-1)的图象在二、四象限,则k=________.
13、(4分)如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)下面是某公司16名员工每人所创的年利润(单位:万元)
5 3 3 5 5 10 8 5 3 5 5 8 3 5 8 5
(1)完成下列表格:
(2)这个公司平均每人所创年利润是多少?
15、(8分)现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形 纸片的每个顶点与小正方形的顶点重合(如图①、图②、图③).
图②矩形(正方形)
,
分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.
要求:
(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形.
(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙.
(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.
16、(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
17、(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.
(1)求直线AB的函数解析式;
(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;
(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
18、(10分)某童装网店批发商批发一种童装,平均每天可售出件,每件盈利元.经调查,如果每件童装降价元,那么平均每天就可多售出件.
(1)设每件童装降价元,那么每天可售出多少件童装?每件童装的利润是多少元?(用含的代数式表示)
(2)为了迎接“六一”儿童节,商家决定降价促销、尽快减少库存,又想保证平均每天盈利元,求每件童装应降价多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)使有意义的x的取值范围是 .
20、(4分)已知,在梯形中,,,,,那么下底的长为__________.
21、(4分)已知A(﹣1,1),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____
22、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
23、(4分)平行四边形的面积等于,两对角线的交点为,过点的直线分别交平行四边形一组对边、于点、,则四边形的面积等于________。
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1、如图2均是边长为1的正方形网格,请按要求用实线画出顶点在格点上的图形。
(1)在图1上,画出一个面积最大的矩形ABCD,并求出它的面积;
(2)在图2上,画出一个菱形ABCD,并求出它的面积。
25、(10分)如图,在平面直角坐标系中,已知点,点,点在第一象限内,轴,且.
(1)求直线的表达式;
(2)如果四边形是等腰梯形,求点的坐标.
26、(12分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表
(1)在图①中,“80分”所在扇形的圆心角度数为;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
【详解】
解:分四种情况:
①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
故选C.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
2、C
【解析】
根据方程的系数结合根的判别式,可得出△=8>0,由此即可得出原方程有两个不相等的实数根.
【详解】
解:∵在方程x2+2x-1=0中,△=22-4×1×(-1)=8>0,
∴方程x2+2x-1=0有两个不相等的实数根.
故选:C.
本题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
3、A
【解析】
解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,
根据勾股定理得:,故选A.
4、D
【解析】
①易证得△ABE≌△BCF(ASA),则可得结论①正确;
②由△ABE≌△BCF,可得∠FBC=∠BAE,证得∠BAE+∠ABF=90°即可知选项②正确;
③根据△BCD是等腰直角三角形,可得选项③正确;
④证明△OBE≌△OCF,根据正方形的对角线将面积四等分,即可得出选项④正确.
【详解】
解:①∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,
故①正确;
②由①知:△ABE≌△BCF,
∴∠FBC=∠BAE,
∴∠FBC+∠ABF=∠BAE+∠ABF=90°,
∴AE⊥BF,
故②正确;
③∵四边形ABCD是正方形,
∴BC=CD,∠BCD=90°,
∴△BCD是等腰直角三角形,
∴BD=BC,
∴CE+CF=CE+BE=BC=,
故③正确;
④∵四边形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,
在△OBE和△OCF中,OB=OC,∠OBE=∠OCF,BE=CF,
∴△OBE≌△OCF(SAS),
∴S△OBE=S△OCF,
∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,
故④正确;
故选:D.
此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.
5、D
【解析】
根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.
【详解】
解:∵D为AB的中点,AB=8,
∴AD=4,
∵DE⊥AC于点E,∠A=30°,
∴DE=AD=2,
故选D.
本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.
6、B
【解析】
判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.
【详解】
解:A、人的身高与年龄不成比例,故选项错误;
B、单价一定,买同一练习本所要的钱数与所买本数成正比例,故选项正确;
C、正方形的面积与它的边长不成比例,故选项错误;
D、路程一定,所用时间与行驶速度成反比例,故选项错误;
故选:B.
考查了正比例函数的定义,此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.
7、D
【解析】
过点D作DG⊥BE,垂足为G,则GD=4=AB,∠G=90°,再利用AAS证明△AEB≌△GED,根据全等三角形的性质可得AE=EG. 设AE=EG=x,则ED=5﹣x,在Rt△DEG中,由勾股定理得可得方程x2+42=(5﹣x)2, 解方程求得x的值即可得AE的长.
【详解】
过点D作DG⊥BE,垂足为G,如图所示:
则GD=4=AB,∠G=90°,
∵四边形ABCD是矩形,
∴AD=BC=5,∠A=90°=∠G,
在△AEB和△GED中,
∴△AEB≌△GED(AAS).
∴AE=EG.
设AE=EG=x,则ED=5﹣x,
在Rt△DEG中,由勾股定理得:ED2=EG2+GD2,
∴x2+42=(5﹣x)2,
解得:x=,即AE=.
故选D.
本题考查了矩形的性质、全等三角形的判定与性质及勾股定理,正确作出辅助线,证明AE=EG是解决问题的关键.
8、B
【解析】
根据两直线的交点坐标和函数的图象即可求出答案.
【详解】
解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),
∴不等式mx<kx+2的解集是x<1,
故选:B.
本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、70°
【解析】
根据三角形的内角和等于180°,求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和等于180°,列式计算即可得解.
【详解】
解:∵,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
此题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
10、x≠1
【解析】
根据分母不能为零,可得答案.
【详解】
解:由题意,得x-1≠0,
解得x≠1,
故答案为:x≠1.
本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.
11、2
【解析】
根据正比例函数的定义即可求解.
【详解】
依题意得a-1=1,解得a=2
此题主要考查正比例函数的定义,解题的关键是熟知正比例函数的特点.
12、1
【解析】
根据反比例函数的定义,次数为-1次,再根据图象在二、四象限,2k-1<1,求解即可.
【详解】
解:根据题意,3k2-2k-1=-1,2k-1<1,
解得k=1或k=且k<,
∴k=1.
故答案为1.
本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.
13、
【解析】
根据三角形的面积公式,已知边CD的长,求出CD边上的高即可.过E作EH⊥CD,易证△ADG与△HDE全等,求得EH,进而求△CDE的面积.
【详解】
过E作EH⊥CD于点H.
∵∠ADG+∠GDH=∠EDH+∠GDH,
∴∠ADG=∠EDH.
又∵DG=DE,∠DAG=∠DHE.
∴△ADG≌△HDE.
∴HE=AG.
∵四边形ABCD和四边形DEFG都是正方形,面积分别是5和1.即AD2=5,DG2=1.
∴在直角△ADG中,
AG=,
∴EH=AG=2.
∴△CDE的面积为CD·EH=××2=.
故答案为.
考查了勾股定理、全等三角形的判定与性质、正方形的性质,正确作出辅助线,构造全等三角形是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)答案见解析;(2)5.375万元.
【解析】
(1)直接由数据求解即可求得答案;
(2)根据加权平均数的计算公式列式计算即可得.
【详解】
解:1)完成表格如下:
(2)这个公司平均每人所创年利润是=5.375(万元).
本题考查了统计表、加权平均数,熟练掌握加权平均数的计算公式是解题的关键.
15、 (1)、答案见解析;(2)、答案见解析;(3)、答案见解析
【解析】
试题分析:(1)、剪出一个非正方形的矩形,过平行四边形的一个定点作垂线即可;(2)、链接平行四边形的对角线即可得出答案;(3)、找到一边的中点,然后连接其中一个顶点和对边的中点即可.
试题解析:如图所示.
考点:四边形的性质
16、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.
【解析】
(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;
(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
(1)设y与x之间的函数关系式为y=kx+b,
将(22.6,34.8)、(24,32)代入y=kx+b,
,解得:,
∴y与x之间的函数关系式为y=﹣2x+1.
当x=23.5时,y=﹣2x+1=2.
答:当天该水果的销售量为2千克.
(2)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=35,x2=3.
∵20≤x≤32,
∴x=3.
答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.
本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
17、(1)y=-x+6;(2)M(0,);(3)(0,-2)或(0,-6).
【解析】
(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.
(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,
【详解】
(1)设直线AB的函数解析式为y=kx+b,则 解方程组得
直线AB的函数解析式为y= -x+6,
(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则 ,
解方程组得
所以直线AB′的解析式为,
当x=0时,y=,
所以M点的坐标为(0,),
(3)有符合条件的点M,理由如下:
如图:因为△ABM是以AB为直角边的直角三角形,
当∠MAB=90°时,直线MA垂直直线AB,
∵直线AB的解析式为y=-x+6,
∴设MA的解析式为y=x+b,
∵点A(4,2),
∴2=4+b,
∴b=-2,
当∠ABM′=90°时,BM′垂直AB,
设BM′的解析式为y=x+n,
∵点B(6,0)
∴6+n=0
∴n=-6,
即有满足条件的点M为(0,-2)或(0,-6).
本题考查了待定系数法求一次函数解析式,一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.熟练掌握相关知识是解题关键.
18、(1),;(2)应降价元.
【解析】
(1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件;
(2)根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
【详解】
解:(1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件.
(2)依题意,得:(40-x)(1+2x)=110,
解得:x1=10,x2=1.
∵要尽快减少库存,
∴x=1.
答:每件童装应降价1元.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.
【详解】
根据二次根式的定义可知被开方数必须为非负数,列不等式得:
x+1≥0,
解得x≥﹣1.
故答案为x≥﹣1.
本题考查了二次根式有意义的条件
20、11
【解析】
首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,得CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.
【详解】
解:如图,过A作AE∥DC交BC与E,
∵AD∥BC,
∴四边形AECD是平行四边形,
∴AD=EC=5,AE=CD,
∵AB=CD=6,
∴AE=AB=6,
∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=6,
∴BC=6+5=11,
故答案为11.
此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.
21、
【解析】
点A(﹣1,1)关于x轴对称的点A'(﹣1,﹣1),求得直线A'B的解析式,令y=0可求点P的横坐标.
【详解】
解:点A(﹣1,1)关于x轴对称的点A'(﹣1,﹣1),
设直线A'B的解析式为y=kx+b,
把A'(﹣1,﹣1),B(2,3)代入,可得
,解得,
∴直线A'B的解析式为,
令y=0,则,
解得x=,
∴点P的坐标为(,0),
故答案为:(,0).
本题综合考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
22、1
【解析】
根据点到x轴的距离是其纵坐标的绝对值解答即可.
【详解】
点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
故答案为:1.
本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
23、
【解析】
根据“过平行四边形对角线的交点的直线将平行四边形等分为两部分”解答即可.
【详解】
如图平行四边形ABCD,
∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
则可得:△DF0≌△BEO,△ADO≌△CBO,△CF0≌△AEO,
∴直线l将四边形ABCD的面积平分.
∵平行四边形ABCD的面积等于10cm2,
∴四边形AEFD的面积等于5cm2,
故答案为:5cm2
本题考查了中心对称,全等三角形的判定与性质,解答本题的关键在于举例说明,利用全等的知识解决.
二、解答题(本大题共3个小题,共30分)
24、 (1)10;(2)4
【解析】
(1) 根据要求画出矩形再求出面积即可;(2)根据要求画出菱形再求出面积即可.
【详解】
(1)如图1,四边形ABCD是面积最大的矩形
由勾股定理得,AB=,BC=2,矩形ABCD的面积=10
(2)如图2,四边形ABCD是菱形
由图可得,BD=2,AC=4,菱形ABCD的面积=4
本题考查了作图-应用与设计,矩形的判定和性质,菱形的判定和性质,解题的关键是灵活运用所学知识解决问题.
25、(1);(2)或
【解析】
(1)由得出BA=6,即可得B的坐标,再设直线BC的表达式,即可解得.
(2) 分两种情况,情况一:当时, 点在轴上;情况二:当时.分别求出两种情况D的坐标即可.
【详解】
(1)
轴
设直线的表达式为, 由题意可得
解得直线的表达式为
(2)1)当时, 点在轴上,设,
方法一:过点作轴, 垂足为
四边形是等腰梯形,
方法二:,解得
经检验是原方程的根,
但当时,四边形是平行四边形,不合题意,舍去
2)当时,则直线的函数解析式为
设
解得,经检验是原方程的根
时,四边形是平行四边形,不合题意,舍去
综上所述,点的坐标为或
此题考查一次函数、一元二次方程,平面坐标,解题关键在于结合题意分两种情况讨论D的坐标.
26、(1)54°;(2)见解析;(3)85;(4)甲班20同名同学的成绩比较整齐.
【解析】
试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;
(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;
(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;
(4)根据方差的意义即可做出评价.
解:(1)6÷30%=20,
3÷20=15%,
360°×15%=54°;
(2)20﹣6﹣3﹣6=5,统计图补充如下:
(3)20﹣1﹣7﹣8=4,=85;
(4)∵S甲2<S乙2,
∴甲班20同名同学的成绩比较整齐.
题号
一
二
三
四
五
总分
得分
每人所创年利润/万元
10
8
5
3
人数
1
4
销售量y(千克)
…
34.8
32
29.6
28
…
售价x(元/千克)
…
22.6
24
25.2
26
…
分数(分)
人数(人)
70
7
80
90
1
100
8
每人所创年利润/万元
10
8
5
3
人数
1
3
8
4
相关试卷
这是一份2024-2025学年湖北省华中学师范大第一附属中学九上数学开学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省郑州大第一附属中学九年级数学第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省师范大附属中学数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。