2024-2025学年湖南省湘西土家族苗族自治州古丈县九年级数学第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为( )
A.60°B.70°C.100°D.110°
2、(4分)用科学记数法表示为( )
A.B.C.D.
3、(4分)点,点是一次函数图象上的两个点,且,则与的大小关系是( )
A.B.C.D.
4、(4分)甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是( )
A.甲B.乙C.丙D.丁
5、(4分)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( )
A.6,6B.7,6C.7,8D.6,8
6、(4分)在下列说法中:
①有一个外角是 120°的等腰三角形是等边三角形.
② 有两个外角相等的等腰三角形是等边三角形.
③ 有一边上的高也是这边上的中线的等腰三角形是等边三角形.
④ 三个外角都相等的三角形是等边三角形.
其中正确的有( )
A.1 个B.2 个C.3 个D.4 个
7、(4分)已知一元二次方程,则它的一次项系数为( )
A.B.C.D.
8、(4分)下列式子:①;②;③;④.其中是的函数的个数是( )
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在等腰中,,,则底边上的高等于__________.
10、(4分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.
11、(4分)要使分式的值为1,则x应满足的条件是_____
12、(4分)有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是 .
13、(4分)如图,经过平移后得到,下列说法错误的是( )
A.B.
C.D.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
15、(8分)在中,,是边上的中线,是的中点,过点作交的延长线于点,连接.
(1)如图1,求证:
(2)如图2,若,其它条件不变,试判断四边形的形状,并证明你的结论.
16、(8分)某区对即将参加中考的初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
(1)本次调查的样本为 ,样本容量为 ;
(2)在频数分布表中,组距为 ,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,计算抽样中视力正常的百分比.
17、(10分)如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.
(1)求证:AD=BE;
(2)当△CDE的周长最小时,求CD的值;
(3)求证:.
18、(10分)如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.
(1)这个无盖纸盒的长为 cm,宽为 cm;(用含x的式子表示)
(2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分).在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.
20、(4分)如果顺次连接四边形的四边中点得到的新四边形是菱形,则与的数量关系是___.
21、(4分)如图,在中,,,是的角平分线,过点作于点,若,则___.
22、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
23、(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若∠DAB=60°,且AB=4,求OE的长.
25、(10分)如图,点E在正方形ABCD内,且∠AEB=90°,AB=10,BE=8,求阴影部分的面积.
26、(12分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.
解:画出图形如下所示:
∵四边形ABCD是平行四边形,
∴∠B=∠D,∠A+∠B=180°,
又∵∠A﹣∠B=40°,
∴∠A=110°,∠B=70°,
∴∠D=∠B=70°.
故选B.
2、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:0.0005=5×10﹣4,
故选:B.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、A
【解析】
根据一次函数的增减性即可判断.
【详解】
∴函数,y随x的增大而减小,当时,.故选A.
此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像性质.
4、D
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵0.02<0.03<0.05<0.11,
∴丁的成绩的方差最小,
∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。
故选:D.
此题考查方差,解题关键在于掌握其定义
5、B
【解析】
首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.
【详解】
解:把已知数据按从小到大的顺序排序后为5元,1元,1元,7元,8元,9元,10元,
∴中位数为7
∵1这个数据出现次数最多,
∴众数为1.
故选B.
本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.
6、B
【解析】
根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.
【详解】
解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;
②有两个外角相等的等腰三角形是等边三角形,说法错误;
③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;
④三个外角都相等的三角形是等边三角形,说法正确,
正确的命题有2个,
故选:B.
此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.
7、D
【解析】
根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.
【详解】
解:一元二次方程,则它的一次项系数为-2,
故选:D.
此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).
8、C
【解析】
根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.
【详解】
解:①y=3x-5,y是x的函数;
②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;
③y=|x|,y是x的函数.
④,y是x的函数.
以上是的函数的个数是3个.
故选:C.
本题主要考查的是函数的概念,掌握函数的定义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意画出以下图形,然后根据等腰三角形性质得出BD=DC=1,进而利用勾股定理求出AD即可.
【详解】
如图所示,AB=AC=3,BC=2,AD为底边上的高,
根据等腰三角形性质易得:BD=CD=1,
∴在Rt△ADC中,=.
故答案为:.
本题主要考查了等腰三角形性质以及勾股定理的运用,熟练掌握相关概念是解题关键.
10、
【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:根据勾股定理,AB=,
BC=,
AC=,
∵AC2+BC2=AB2=26,
∴△ABC是直角三角形,
∵点D为AB的中点,
∴CD=AB=×=.
故答案为.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
11、x=-1.
【解析】
根据题意列出方程即可求出答案.
【详解】
由题意可知:=1,
∴x=-1,
经检验,x=-1是原方程的解.
故答案为:x=-1.
本题考查解分式方程,注意,别忘记检验,本题属于基础题型.
12、1
【解析】
试题分析:先由平均数计算出a=4×5-1-3-5-6=4,再计算方差(一般地设n个数据,x1,x1,…xn的平均数为,=(),则方差=[]),=[]=1.
考点:平均数,方差
13、D
【解析】
根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.
【详解】
A、AB∥DE,正确;
B、,正确;
C、AD=BE,正确;
D、,故错误,
故选D.
本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)k=4或k=2.
【解析】
(1)根据根的判别式为1,得出方程有两个不相等的实数根;(2)将x=2代入方程得出关于k的一元二次方程,从而得出k的值.
【详解】
(1)∵△=
=
=,
∴方程有两个不相等的实数根;
(2)∵方程有一个根为2,
∴,
,
∴,.
本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,熟练掌握相关知识是解题的关键.
15、(1)见解析;(2)四边形为正方形,见解析
【解析】
(1)先证明得到AF=DB,于是可证;
(2)先证明四边形是平行四边形,再加一组邻边相等证明它是菱形,最后利用等腰三角形三线合一的性质证明有一个直角,从而证明它是正方形.
【详解】
(1)证明:∵是的中点
,
,
,
又,
,
,
是边上的中线 ,
,
;
(2)解:四边形为正方形,理由如下:
由(1)得,
又,
∴四边形为平行四边形,
在中,
是边上的中线,
,
∴四边形为菱形,
,是边上的中线,
∴四边形为正方形.
本题考查了正方形的判定,涉及的知识点有直角三角形斜边中线的性质,全等三角形的判定、平行四边形及菱形、正方形的判定,掌握相关性质定理进行推理论证是解题关键.
16、(1)从中抽取的200名即将参加中考的初中毕业生的视力;200;(2)0.3;60;0.05,见解析;(3)70%.
【解析】
(1)根据样本的概念、样本容量的概念解答;
(2)根据组距的概念求出组距,根据样本容量和频率求出a,根据样本容量和频数求出b,将频数分布直方图补充完整;
(3)根据频数分布直方图求出抽样中视力正常的百分比.
【详解】
(1)样本容量为:20÷0.1=200,
本次调查的样本为从中抽取的200名即将参加中考的初中毕业生的视力,
故答案为:从中抽取的200名即将参加中考的初中毕业生的视力;200;
(2)组距为0.3,
a=200×0.3=60,
b=10÷200=0.05,
故答案为:0.3;60;0.05;
频数分布直方图补充完整如图所示;
(3)抽样中视力正常的百分比为:×100%=70%.
本题考查的是读频数分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、(1)见解析;(1);(3)见解析
【解析】
(1)先判断出∠ACD=∠BCE,得出△ADC≌△CBE(SAS),即可得出结论;
(1)先判断出DE=CD,进而得出△CDE的周长为(1+)CD,进而判断出当CD⊥AB时,CD最短,即可得出结论;
(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE1+DB1=DE1,即可得出结论.
【详解】
证明:(1)∵∠ACB=∠DCE=90°,
∴∠1+∠3=90°,∠1+∠3=90°,
∴∠1=∠1.
∵BC=AC,CD=CE,
∴△CAD≌△CBE,
∴AD=BE.
(1)∵∠DCE=90°,CD=CE.
∴由勾股定理可得CD=.
∴△CDE周长等于CD+CE+DE==.
∴当CD最小时△CDE周长最小.
由垂线段最短得,当CD⊥AB时,△CDE的周长最小.
∵BC=AC=6,∠ACB=90°,
∴AB=6.
此时AD=CD=.
∴当CD时,△CDE的周长最小.
(3)由(1)易知AD=BE,∠A=∠CBA=∠CBE=45°,
∴∠DBE=∠CBE+∠CBA=90°.
在Rt△DBE中:.
在Rt△CDE中:.
∴.
此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD⊥AB时,CD最短是解本题的关键.
18、(1)(20﹣2x),(12﹣2x);(2)1
【解析】
(1)观察图形根据长宽的变化量用含x的代数式表示即可.
(2)根据(1)中代数式列出方程求解,去掉不合题意的取值.
【详解】
(1)长为(20﹣2x),宽为(12﹣2x)
(2)由题意(20﹣2x)(12﹣2x)=180
240-64x+4x2=180
4x2-64x+60=0
x2-16x+15=0
(x-15)(x-1)=0
解得x1=15(不合题意),x2=1
∴x的取值只能是1,即x=1.
结合图形观察长宽的变化量,根据一元二次方程求解即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-4或1
【解析】
分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.
解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,
∴|x-1|=5,
解得x=-4或1.
故答案为-4或1.
20、
【解析】
先证明EFGH是平行四边形,再根据菱形的性质求解即可.
【详解】
如图1所示,连接AC,
∵E、F、G、H分别是四边形ABCD边的中点,
∴HE∥AC,HE=AC,GF∥AC,GF=AC,
∴HE=GF且HE∥GF;
∴四边形EFGH是平行四边形. 连接BD,如图2所示:
若四边形EFGH成为菱形,
则EF=HE,
由(1)得:HE=AC,
同理:EF=BD,
∴AC=BD;
故答案为:AC=BD.
本题考查了平行四边形的判定、中点四边形、菱形的性质、三角形中位线定理;熟练掌握三角形中位线定理是解决问题的关键.
21、
【解析】
根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式计算即可得解.
【详解】
∵∠ACB=90°,CA=CB,
∴∠B=45°,
∵AD平分∠CAB,∠ACB=90°,DE⊥AB,
∴DE=CD=1,∠BDE=45°,
∴BE=DE=1,
在Rt△BDE中,根据勾股定理得,BD=.
故答案为:.
本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,熟记性质是解题的关键.
22、①②③④
【解析】
分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.
详解:∵BC=EC,
∴∠CEB=∠CBE,
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CEB=∠EBF,
∴∠CBE=∠EBF,
∴①BE平分∠CBF,正确;
∵BC=EC,CF⊥BE,
∴∠ECF=∠BCF,
∴②CF平分∠DCB,正确;
∵DC∥AB,
∴∠DCF=∠CFB,
∵∠ECF=∠BCF,
∴∠CFB=∠BCF,
∴BF=BC,
∴③正确;
∵FB=BC,CF⊥BE,
∴B点一定在FC的垂直平分线上,即PB垂直平分FC,
∴PF=PC,故④正确.
故答案为①②③④.
点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.
23、13.
【解析】
利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案
【详解】
利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13
本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(1)1.
【解析】
(1)根据平行四边形的判定和菱形的判定证明即可;
(1)根据菱形的性质和勾股定理解答即可.
【详解】
(1)∵AB∥DC,
∴∠CAB=∠ACD.
∵AC平分∠BAD,
∴∠CAB=∠CAD.
∴∠CAD=∠ACD,
∴DA=DC.
∵AB=AD,
∴AB=DC.
∴四边形ABCD是平行四边形.
∵AB=AD,
∴四边形 ABCD是菱形;
(1)∵四边形 ABCD是菱形,∠DAB=60°,
∴∠OAB=30,∠AOB=90°.
∵AB=4,
∴OB=1,AO=OC=1.
∵CE∥DB,
∴四边形 DBEC是平行四边形.
∴CE=DB=4,∠ACE=90°.
∴.
本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
25、76
【解析】
由勾股定理先求出AE=6,然后求出正方形和直角三角形的面积,最后相减可得阴影部分的面积.
【详解】
∵∠AEB=90°,AB=10,BE=8.
∴由勾股定理得, =,
∴,
,
∴.
本题主要考查了勾股定理的应用,也考查了正方形和三角形的面积计算,比较基础.
26、证明见解析.
【解析】
由平行四边形的性质得出AB∥CD,得出内错角相等∠E=∠BAE,再由角平分线证出∠E=∠DAE,即可得出结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,∴∠E=∠BAE,
∵AE平分∠BAD,∴∠BAE=∠DAE,
∴∠E=∠DAE,
∴DA=DE.
题号
一
二
三
四
五
总分
得分
视力
频数(人)
频率
4.0≤x<4.3
20
0.1
4.3≤x<4.6
40
0.2
4.6≤x<4.9
70
0.35
4.9≤x<5.2
a
0.3
5.2≤x<5.5
10
b
2024-2025学年湖南省凤凰县九上数学开学调研模拟试题【含答案】: 这是一份2024-2025学年湖南省凤凰县九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省天门市六校数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年湖北省天门市六校数学九年级第一学期开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年湖北省数学九年级第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。