2024-2025学年湖南省永州市蓝山县九上数学开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲车行驶40km与乙车行使30km所用的时间相同,已知甲车比乙车每小时多行驶15km.设甲车的速度为xkm/h,依题意,下列所列方程正确的是( )
A.=B.=C.=D.=
2、(4分)下列图形是中心对称图形,但不是轴对称图形的是( )
A.B.C.D.
3、(4分)下列变形中,正确的是( )
A.B.
C.D.
4、(4分)在ABCD中,∠A+∠C=160°,则∠C的度数为( )
A.100°B.80°C.60°D.20°
5、(4分)如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是( )
A.2B.3C.4D.5
6、(4分)如图,直线y=﹣x+4与x轴、y轴分别交于点A、B、C是线段AB上一点,四边形OADC是菱形,则OD的长为( )
A.4.2B.4.8C.5.4D.6
7、(4分)如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为( )
A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8
8、(4分)如图,P为□ABCD对角线BD上一点,△ABP的面积为S1,△CBP的面积为S2,则S1和S2的关系为 ( )
A.S1>S2B.S1=S2C.S1
9、(4分)如果的值为负数,则 x 的取值范围是_____________.
10、(4分)一元二次方程 的一次项系数为_________.
11、(4分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.
12、(4分)如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.
13、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF
(1)求证:四边形EDFG是正方形;
(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?
15、(8分)为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h) ,统计结果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表 睡眠时间分布情况
请根据以上信息,解答下列问题:
(1) m = , n = , a = , b = ;
(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在 组(填组别) ;
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.
16、(8分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.
(1)分别求出线段AB,CD的长度;
(2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.
17、(10分)涡阳某童装专卖店在销售中发现,一款童装每件进价为元,销售价为元时,每天可售出件,为了迎接“六-一”儿童节,商店决定采取适当的降价措施,以扩大销售增加利润,经市场调查发现,如果每件童装降价元,那么平均可多售出件.
(1)若每件童装降价元,每天可售出 件,每件盈利 元(用含的代数式表示);
每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利元.
18、(10分)计算:(-)0+(-4)-2-|-|
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.
20、(4分)如图所示的分式化简,对于所列的每一步运算,依据错误的是_______.(填序号)
①:同分母分式的加法法则
②:合并同类项法则
③:乘法分配律
④:等式的基本性质
21、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
22、(4分)某次越野跑中,当小明跑了1600m时,小刚跑了1400m,小明和小刚在此后时间里所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑全程为________ m.
23、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八年级共有四个班,人数分别为:人,有一次数学测试,每个班同学的平均成绩分别为:分、分、分、分。
(1)求这次数学测试的全年级平均成绩;
(2)若所有学生的原测试成绩的方差为。后来发现有一道分题,所有同学都不得分,是题错了,老师只好在每位同学的原成绩上加上分,那么现在全年级的平均成绩和这些成绩数据的方差各是多少?
(3)其中八(1)班人的平均分66分,测试成绩的中位数也恰好,且成绩是分的只有一人,每个同学的测试成绩都是整数,那么八(1)班所有同学的测试成绩的方差不会小于哪个数?
25、(10分)我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,记,那么三角形的面积为,请用此公式求解:在中,,,,求的面积.
26、(12分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
设甲车的速度为xkm/h,则乙车的速度为(x-15)km/h,根据时间=路程÷速度结合甲车行驶40km与乙车行使30km所用的时间相同,即可得出关于x的分式方程,此题得解.
【详解】
设甲车的速度为xkm/h,则乙车的速度为(x﹣15)km/h,
根据题意得:=.
故选A.
本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
2、C
【解析】
根据中心对称图形与轴对称图形的定义即可判断.
【详解】
A.角是轴对称图形,不是中心对称图形,故错误;
B不一定是轴对称图形,不是中心对称图形,故错误;
C是中心对称图形,不是轴对称图形,故正确;
D是轴对称图形,不是中心对称图形,故错误;
故选C.
此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知中心对称图形与轴对称图形的性质.
3、D
【解析】
根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。
【详解】
解:A. 是最简分式,不能约分,故本选项错误;
B. ,故本选项错误;
C. ,故本选项错误;
D. ,故本选项正确。
故选:D
本题主要考查了分式的性质, 熟练掌握运算法则是解本题的关键.
4、B
【解析】
根据平行四边形的对角相等,结合∠A+∠C=160°求解即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠A=∠C,
∵∠A+∠C=160°,
∴∠A=∠C=80°.
故选B.
本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
5、B
【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.
【详解】
在中,∴,,,∴.
∴为直角三角形,且.
∵四边形是平行四边形,
∴,.
∴当取最小值时,线段最短,此时.
∴是的中位线.
∴.∴.
故选B.
本题考查了勾股定理逆定理,平行四边形的性质,三角形的中位线以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.
6、B
【解析】
由直线的解析式可求出点B、A的坐标,进而可求出OA、OB的长,再利用勾股定理即可求出AB的长,由菱形的性质可得OE⊥AB,OE=DE,再根据直角三角形的面积可求出OE的长,进而可求出OD的长.
【详解】
解:∵直线y=﹣x+4与x轴、y轴分别交于点A、B,
∴点A(3,0)、点B(0,4),
∴OA=3,OB=4,
∴AB=,
∵四边形OADC是菱形,
∴OE⊥AB,OE=DE,
由直角三角形的面积得,
即3×4=5×OE.
解得:OE=2.4,
∴OD=2OE=4.8.
故选B.
本题考查了菱形的性质和一次函数与坐标轴的交点问题,难度不大,题目设计新颖,解题的关键是把求OD的长转化为求直角△AOB斜边上的高OE的长的2倍.
7、D
【解析】
连接OO'交AE与点M,过点O'作O'H⊥OC于点H,由轴对称的性质可知AE垂直平分OO',先用面积法求出OM的长,进一步得出OO'的长,再证△AOE∽△OHO',分别求出OH,O'H的长,得出点O'的坐标,再结合点C坐标即可用待定系数法求出直线CO'的解析式.
【详解】
解:连接OO'交AE与点M,过点O'作O'H⊥OC于点H,
∴点E为OC中点,
∴OE=EC=OC=3,
在Rt△AOE中,OE=3,AO=4,
∴AE==5,
∵将△OAE沿AE翻折,使点O落在点O′处,
∴AE垂直平分OO',
∴OM=O'M,
在Rt△AOE中,
∵S△AOE=AO•OE=AE•OM,
∴×3×4=×5×OM,
∴OM=,
∴OO'=,
∵∠O'OH+∠AOM=90°,∠MAO+∠AOM=90°,
∴∠MAO=∠O'OH,
又∵∠AOE=∠OHO'=90°,
∴△AOE∽△OHO',
∴==,
即==,
∴OH=,O'H=,
∴O'的坐标为(,),
将点O'(,),C(6,0)代入y=kx+b,
得,,
解得,k=﹣,b=8,
∴直线CO'的解析式为y=﹣x+8,
故选:D.
本题考查了轴对称的性质,相似三角形的判定与性质,待定系数法等,解题关键是利用三角形相似的性质求出点O'的坐标.
8、B
【解析】
分析:根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底等高的三角形的面积相等.
详解:∵在□ABCD中,点A、C到BD的距离相等,设为h.
∴S1= S△ABP=BP ,S2= S△CPB=BP.
∴S1=S2,故选:B.
点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据分式的值为负数,分子的最小值为1,得出分母小于0列出关于x的不等式,求出不等式的解集即可得到x的范围.
【详解】
∵,,
∴,
解得.
故答案为
本题考查分式的值.分式的值要为负,那么分母和分子必须异号,在本题中分子已经为正,那么分母只能为负.
10、
【解析】
一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0).其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项.
【详解】
解:一元二次方程 的一次项系数为-1.
故答案为:.
本题考查的知识点是一元二次方程的一般形式,是基础题目,易于理解掌握.
11、84°.
【解析】
根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.
【详解】
解:∵DE垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=32°,
∵AD是∠BAC的平分线,
∴∠CAD=∠DAB=32°,
∴∠C=180°−32°×3=84°,
故答案为84°.
本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
12、30°
【解析】
过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.
【详解】
解:过A作AE⊥BC于点E,如图所示:
由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,
得到AE=AB,又△ABE为直角三角形,
∴∠ABE=30°,
则平行四边形中最小的内角为30°.
故答案为:30°
本题考查了平行四边形的面积公式及性质,根据题意求得AE=AB是解决问题的关键.
13、8
【解析】
根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
【详解】
解:在菱形ABCD中,AB=5,AC=6,
因为对角线互相垂直平分,
所以∠AOB=90°,AO=1,
在RT△AOB中,BO=,
∴BD=2BO=8.
注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
【解析】
(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;
(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.
【详解】
(1)证明:连接CD,如图1所示.
∵为等腰直角三角形,,
D是AB的中点,
∴
在和中,
∴ ,
∴,
∵,
∴,
∴为等腰直角三角形.
∵O为EF的中点,,
∴,且,
∴四边形EDFG是正方形;
(2)解:过点D作于E′,如图2所示.
∵为等腰直角三角形,,
∴,点E′为AC的中点,
∴ (点E与点E′重合时取等号).
∴
∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GD⊥EF且GD=EF;(2)根据正方形的面积公式找出4≤S四边形EDFG<1.
15、(1)7,18,17.5%,45%;(2)3;(3)440人.
【解析】
(1)根据40名学生平均每天的睡眠时间即可得出结果;
(2)由中位数的定义即可得出结论;
(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.
【详解】
(1)7≤t<8时,频数为m=7;
9≤t<10时,频数为n=18;
∴a=×100%=17.5%;b=×100%=45%;
故答案为7,18,17.5%,45%;
(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,
∴落在第3组;
故答案为3;
(3)该校学生中睡眠时间符合要求的人数为800×=440(人);
答:估计该校学生中睡眠时间符合要求的人数为440人.
本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.
16、 (1)AB=,CD=;(2)能否构成直角三角形,理由见解析.
【解析】
(1)利用勾股定理求出AB、CD的长即可;
(2)根据勾股定理的逆定理,即可作出判断.
【详解】
(1)
(2)如图,
∵
∴
∴以AB、CD、EF三条线可以组成直角三角形.
考查勾股定理, 勾股定理的逆定理,比较基础,熟练掌握勾股定理以及勾股定理的逆定理是解题的关键.
17、 (1);(2)每件童装降价元时,平均每天盈利元.
【解析】
(1)根据每降价1元,可多售出3件,降价x元,则可多售出3x件,由此即可求得答案;
(2)根据总利润=单件利润×数量列出方程,解方程即可得答案.
【详解】
(1)若每件童装降价元,每天可售出(30+3x)件,每件盈利(100-60-x)元,
故答案为:;
由题意得:,
化简得:,
解得:,
要让利顾客,取,
答:每件童装降价元时,平均每天盈利元.
本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
18、1
【解析】
先计算0指数幂、负指数幂和绝对值,再根据有理数加减混合运算法则计算即可得到结果.
【详解】
解:原式=
=1+-
=1.
此题考查了实数加减混合运算,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4米
【解析】
过点C作CE⊥AB于点E,则人离墙的距离为CE, 在Rt△ACE中,根据勾股定理列式计算即可得到答案.
【详解】
如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,
过点C作CE⊥AB于点E,则人离墙的距离为CE,
由题意可知AE=AB-BE=4.5-1.5=3(米).
当人离传感器A的距离AC=5米时,灯发光.
此时,在Rt△ACE中,根据勾股定理可得,
CE2=AC2-AE2=52-32=42,
∴CE=4米.
即人走到离墙4米远时,灯刚好发光.
本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.
20、④
【解析】
根据分式的基本性质可知.
【详解】
解:根据的是分式的基本性质,而不是等式的性质,所以④错误,
故答案为:④.
本题考查了分式的基本性质,解题的关键是熟知分式的基本性质是分子分母同时乘以或除以一个不为零的整式,分式的值不变.
21、1.
【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
22、1
【解析】
根据函数图象可以列出相应的二元一次方程组,从而可以解答本题.
【详解】
设小明从1600处到终点的速度为a米/秒,小刚从1400米处到终点的速度为b米/秒,
由题意可得:小明跑了100秒后还需要200秒到达终点,而小刚跑了100秒后还需要100秒到达终点,则
,
解得:,
故这次越野跑的全程为:1600+300×2=1600+600=1(米),
即这次越野跑的全程为1米.
故答案为:1.
本题考查了一次函数的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组,利用数形结合的思想解答问题.
23、.
【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.
【详解】
如图,作AE⊥OB于E,A′H⊥OB于H.
∵A(1,),
∴OE=1,AE=,
∴OA==2,
∵△OAB是等边三角形,
∴∠AOB=60°,
∵∠AOA′=15°,
∴∠A′OH=60°﹣15°=45°,
∵OA′=OA=2,H⊥OH,
∴A′H=OH=,
∴(,),
故答案为:(,).
此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.
二、解答题(本大题共3个小题,共30分)
24、(1)65.99分;(2)全年级的平均成绩为68.99分,这些成绩数据的方差为25;(3)方差不会小于.
【解析】
(1)利用平均数的计算公式计算;
(2)根据平均数的性质、方差的性质解答;
(3)根据方差的性质得到符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,根据方差的计算公式计算即可.
【详解】
(1)全年级平均成绩=≈65.99(分);
(2)每位同学的原成绩上加上3分,
全年级的平均成绩为65.99+3=68.99(分),
这些成绩数据的方差为25;
(3)∵所有数据越接近平均数,方差越小,且平均数只有一个,
∴符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,
S2=×[20×(-1)2+0+20×12]=,
则八(1)班所有同学的测试成绩的方差不会小于.
本题考查的是方差、平均数、中位数的概念和计算,掌握平均数的计算公式、方差的计算公式、中位数的概念和性质是解题的关键.
25、
【解析】
利用阅读材料,先计算出p的值,然后根据海伦公式计算△ABC的面积;
【详解】
解:,,,
,
.
考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.
26、BD=2;CD=
【解析】
过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用△CDE是等腰直角三角形,即可求出CD的长.
【详解】
解:如图,过点D作DE⊥BC于E,
∵∠A=90°,AD=AB=,
∴由勾股定理可得:
BD=,
∵∠CBD=30°,DEBE,
∴DE=BD=×2=1,
又∵Rt△CDE中,∠DEC=90°,∠C=45°,
∴CE=DE=1,
∴由勾股定理可得
CD=.
本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD分成两个直角三角形是解题的关键,也是本题的难点.
题号
一
二
三
四
五
总分
得分
组别
睡眠时间分组
人数(频数)
1
7≤t<8
m
2
8≤t<9
11
3
9≤t<10
n
4
10≤t<11
4
2024-2025学年湖南省凤凰县九上数学开学调研模拟试题【含答案】: 这是一份2024-2025学年湖南省凤凰县九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省常德市鼎城区数学九上开学调研试题【含答案】: 这是一份2024-2025学年湖南省常德市鼎城区数学九上开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。