![2024-2025学年湖南长沙市芙蓉区第十六中学九上数学开学考试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16181758/0-1726974939776/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年湖南长沙市芙蓉区第十六中学九上数学开学考试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16181758/0-1726974939938/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年湖南长沙市芙蓉区第十六中学九上数学开学考试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16181758/0-1726974939990/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年湖南长沙市芙蓉区第十六中学九上数学开学考试试题【含答案】
展开
这是一份2024-2025学年湖南长沙市芙蓉区第十六中学九上数学开学考试试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF,若四边形ABCD的面积为6,则△BEF的面积为( )
A.2B.C.D.3
2、(4分)从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且,,,.根据统计结果,最适合参加竞赛的两位同学是( )
A.甲、乙B.丙、丁C.甲、丁D.乙、丙
3、(4分)一次函数的图象经过( )
A.一、二、三象限B.一、二、四象限
C.二、三、四象限D.一、三、四象限
4、(4分)下列代数式是分式的是( )
A.B.C.D.
5、(4分)若,则下列各式一定成立的是( )
A.B.
C.D.
6、(4分)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为( )
A.y=2x﹣2B.y=2x+1C.y=2xD.y=2x+2
7、(4分)如图,已知直线与的交点的横坐标为,根据图象有下列3个结论:①;②;③是不等式 的解集其中正确的个数是( )
A.0,B.1,C.2,D.3
8、(4分)下列运算正确的是( )
A.=B.=a+1C.+=0D.﹣=
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:__________.
10、(4分)若,时,则的值是__________.
11、(4分)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是_____.
12、(4分)分解因式:4-m2=_____.
13、(4分)将直线y=3x﹣1向上平移1个单位长度,得到的一次函数解析式为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形网格中每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,已知△ABC的三个顶点都是格点,请按要求画出三角形.
(1)将△ABC先上平移1个单位长度再向右平移2个单位长度,得到△A'B'C';
(2)将△A'B'C'绕格点O顺时针旋转90°,得到△A''B''C''.
15、(8分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.
(1)求证:△AOE≌△COF;
(2)求证:四边形AFCE为菱形;
(3)求菱形AFCE的周长.
16、(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.
17、(10分)五一期间,甲、乙两人分别骑自行车和摩托车从地出发前往地郊游,并以各自的速度匀速行驶,到达目的地停止,途中乙休息了一段时间,然后又继续赶路.甲、乙两人各自行驶的路程与所用时间之间的函数图象如图所示.
(1)甲骑自行车的速度是_____.
(2)求乙休息后所行的路程与之间的函数关系式,并写出自变量的取值范围.
(3)为了保证及时联络,甲、乙两人在第一次相遇时约定此后两人之间的路程不超过.甲、乙两人是否符合约定,并说明理由.
18、(10分)为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.
(1)求这两年该企业投入科研经费的年平均增长率;
(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在Rt△ABC中,∠C=90°,∠A=30°,BC=6,那么AB=_____.
20、(4分)计算:=____.
21、(4分)如图,平行四边形ABCD中,,,AE平分交BC于点E,则CE的长为______.
22、(4分)若a2﹣5ab﹣b2=0,则的值为_____.
23、(4分)已知关于的方程的解是正数,则的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.
(1)请你写出这个定理的逆命题是________;
(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.
25、(10分)如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?
26、(12分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC=,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2,∵S△ABC=•AB•AC=×2×2=4,∴S△ADC=2,∵,∴GH=BG=,
∴BH=,又∵EF=AC=2,∴S△BEF= •EF•BH=×2×=,故选C.
考点:1勾股定理;2三角形面积.
2、C
【解析】
方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动越小.选择方差较小的两位.
【详解】
解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.
故选:C.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
3、D
【解析】
根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.
【详解】
解:∵一次函数中k=2>0,b=-4<0,
∴此函数的图象经过一、三、四象限.
故选:D.
本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.
4、D
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
、、的分母中均不含有字母,因此它们是整式,而不是分式;
分母中含有字母,因此是分式.
故选:D.
考查分式的定义,掌握分式的定义是判断代数式是不是分式的前提.
5、D
【解析】
将条件进行变形后,再根据不等式的基本性质进行判断即可得解.
【详解】
由a-b<0,可得:a<b,因而a>b错误,故选项A错误;
当a<0 b>0时,ab>0错误,故选项B错误;
∵a<b,∴,故选项C错误;
∵a<b,∴,故选项D正确.
故选D.
不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
6、B
【解析】
试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:
y=2(x+1)﹣1,即y=2x+1,
故选B.
考点:一次函数图象与几何变换
7、C
【解析】
根据一次函数的图象和性质可得a>0;b>0;当x>-2时,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集.
【详解】
解:由图象可知,a>0,故①正确;
b>0,故②错误;
当x>-2,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集,故③正确.
故选:C.
本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.
8、C
【解析】
根据分式的性质进行判断,去掉带有负号的括号,每一项都应变号;分子与分母同除以一个不为0的数,分式的值不变.
【详解】
A. =,故错误;
B. =a+,故错误;
C. +=-=0,故正确;
D. ﹣=,故错误;
故选C
本题考查了分式的加减法则以及分式的基本性质,正确理解分式的基本性质是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
提取公因式a进行分解即可.
【详解】
解:a2−5a=a(a−5).
故答案是:a(a−5).
本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
10、1
【解析】
利用平方差公式求解即可求得答案.
【详解】
解:当,时,
.
故答案为:1.
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.
11、2
【解析】
作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.
【详解】
作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:
连接M′N′,即为MP+PQ+QN的最小值.
根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,
∴△ONN′为等边三角形,△OMM′为等边三角形,
∴∠N′OM′=90°,
∴在Rt△M′ON′中,
M′N′=.
故答案为:2.
本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.
12、(2+m)(2−m)
【解析】
原式利用平方差公式分解即可.
【详解】
解:原式=(2+m)(2−m),
故答案为:(2+m)(2−m).
此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.
13、y=3x.
【解析】
根据“上加、下减”的原则进行解答即可.
【详解】
由“上加、下减”的原则可知,
将函数y=3x﹣1的图象向上平移1个单位所得函数的解析式为y=3x﹣1+1=3x.
故答案为y=3x.
本题考查的是一次函数的图象与几何变换,熟知“上加、下减”的原则是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析.
【解析】
(1)先找出平移后的点A′、B′、C′,再顺次连接即可;
(2)根据网格的特点和旋转的性质,找出A′′、B′′、C′′,再顺次连接即可;
【详解】
(1)如图,即为所求;
(2)如图,即为所求;
本题考查了平移的性质,旋转的性质,根据性质找出对应点是解答本题的关键.
15、(1)详见解析;(2)详见解析;(3)20cm.
【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;
(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.
【详解】
(1)证明:∵EF是AC的垂直平分线,
∴AO=OC,∠AOE=∠COF=90°,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO.
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA);
(2)证明:∵△AOE≌△COF,
∴OE=OF,
∵OA=OC,
∴四边形AFCE为平行四边形,
又∵EF⊥AC,
∴平行四边形AFCE为菱形;
(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,
在Rt△ABF中,由勾股定理得:
AB2+BF2=AF2,
即42+(8﹣x)2=x2,
解得x=1.
所以菱形AFCE的周长为1×4=20cm.
本题考查了菱形的判定与性质, 全等三角形的判定与性质, 线段垂直平分线的性质, 矩形的性质等知识.根据勾股定理并建立方程是解题的关键.
16、(1)乙的平均成绩是79.5(分),应选派甲;(2)甲的最终成绩:79.5(分),
乙的最终成绩:80.4(分),应选派乙.
【解析】
(1)求出乙的平均成绩,与甲作比较即可;
(2)分别计算甲乙的加权平均数,得到最终成绩,再进行比较即可.
【详解】
解:(1)乙的平均成绩:(73+80+82+83)=79.5(分),
∵甲的平均成绩为80.25,
∴应选派甲;
(2)甲的最终成绩:85×20%+78×10%+85×30%+73×40%=79.5(分)
乙的最终成绩:73×20%+80×10%+82×30%+83×40%=80.4(分)
∴应选派乙.
本题考查了算术平均数和加权平均数,熟练掌握求算术平均数和加权平均数的方法是解题的关键.
17、 (1)0.25km/min;(2)(50≤x≤1);(3)甲、乙两人符合约定.
【解析】
(1)由图像可知,甲没有休息,匀速行驶,到终点时,行驶了30km,用了120min,即可求得其速度;
(2)首先根据图像可判定当甲走80min时,距A地20km,两人相遇,然后设乙休息后所行的路程y与x之间的函数关系为y=kx+b(k≠0),根据图像可得其经过(50,10)和(80,20)两点,列出二元一次方程组,解得即可,根据函数解析式,即可得出乙所用的时间,即得出自变量x的取值范围;
(3)根据图像信息,结合(1)和(2)的结论,判定当x=50,和x=1时,甲乙两人行驶的距离,判定两人距离差即可看是否符合约定.
【详解】
解:(1)0.25km/min;
由图像可知,甲没有休息,匀速行驶,到终点时,行驶了30km,用了120min,其速度为
30÷120=0.25km/min;
(2)当甲走80min时,距A地20km,两人相遇.
设乙休息后所行的路程y与x之间的函数关系为y=kx+b(k≠0),
因为图像经过(50,10)和(80,20)两点,
由题意,得,
解得:,
所以y与x之间的函数关系式为.
当y=30时,x=1.
所以自变量x的取值范围为50≤x≤1.
(3)当x=50时,甲走了12.5km,乙走了10km,12.5-10=2.5
相关试卷
这是一份2024-2025学年湖南省长沙市岳麓区九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省长沙市雨花区广益实验中学数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省长沙市湖南广益实验中学数学九上开学经典试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)