2024-2025学年吉林省安图县第三中学数学九年级第一学期开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)计算的正确结果是( )
A.B.1C.D.﹣1
2、(4分)若分式有意义,则实数的取值范围是( )
A.B.C.D.
3、(4分)龙华区某校改造过程中,需要整修校门口一段全长2400m的道路,为了保证开学前师生进出不受影响,实际工作效率比原计划提高了,结果提前8天完成任务,若设原计划每天整个道路x米,根据题意可得方程( )
A.B.
C.D.
4、(4分)如图,在平行四边形ABCD中,∠B=70°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=( )
A.45°B.55°C.50°D.60°
5、(4分)关于的方程有实数根,则满足( )
A.B.且C.且D.
6、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
7、(4分)在下列长度的各组线段中,能构成直角三角形的是( )
A.3,5,9B.4,6,8C.13,14,15D.8,15,17
8、(4分)如图,直线与轴,轴分别交于点,,以为底边在轴右侧作等腰,将沿轴折叠,使点恰好落在直线上,则点的坐标为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE=5,折痕为 PQ,则 PQ 的长为_________cm.
10、(4分)计算的倒数是_____.
11、(4分)如图,一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.
12、(4分)如图,菱形ABCD的边长是4 cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为__________.
13、(4分)如图,是中边中点,,于,于,若,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:
求这户家庭月用水量的平均数、众数和中位数;
根据上述数据,试估计该社区的月用水量;
由于我国水资源缺乏,许多城市常利用分段计费的方法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合适?简述理由.
15、(8分)在平面直角坐标系中,已知一次函数的图像与轴交于点,与轴交于点
求两点的坐标
在给定的平面直角坐标系中画出该函数的图象;
根据图像回答:当时,的取值范围是 .
16、(8分)如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;
(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:
①M点的坐标为 .
②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).
17、(10分)某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ,并请补全条形统计图;
(2)扇形统计图中“D”所对应的圆心角的度数是 ;
(3)若该市约有120万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.
18、(10分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.
(1)求正比例函数和一次函数的表达式;
(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;
(3)求出的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若函数是正比例函数,则m=__________.
20、(4分)如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=______.
21、(4分)如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚和交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使=3,=3),然后张开两脚,使、两个尖端分别在线段l的两端上,若=2,则的长是_________.
22、(4分)若关于x的分式方程产生增根,则m=_____.
23、(4分)如图,菱形ABCD的边长为8cm,∠B=45°,AE⊥BC于点E,则菱形ABCD的面积为_____cm2。
二、解答题(本大题共3个小题,共30分)
24、(8分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD
(1)若存在四边形ADEF,判断它的形状,并说明理由.
(2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.
(3)当△ABC满足什么条件时四边形ADEF不存在.
25、(10分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
26、(12分)如图,在中,点为边的中点,点在内,平分点在上,.
(1)求证:四边形是平行四边形;
(2)线段之间具有怎样的数量关系?证明你所得到的结论.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
2、B
【解析】
分式有意义,则,求出x的取值范围即可.
【详解】
∵分式有意义,
∴,
解得:,
故选B.
本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.
3、A
【解析】
直接利用施工时间提前8天完成任务进而得出等式求出答案.
【详解】
解:设原计划每天整修道路x米,根据题意可得方程:
.
故选:A.
本题考查由实际问题抽象出分式方程,正确找出等量关系是解题关键.
4、B
【解析】
根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.
【详解】
:解:∵AD∥BC,∠B=70°,
∴∠BAD=180°-∠B=110°.
∵AE平分∠BAD
∴∠DAE=∠BAD=55°.
∴∠AEB=∠DAE=55°
∵CF∥AE
∴∠1=∠AEB=55°.
故选B.
本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.
5、A
【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
【详解】
当a=5时,原方程变形为-4x-1=0,解得x=-;
当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
所以a的取值范围为a≥1.
故选A.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
6、D
【解析】
将这组数据按从小到大的顺序排列后,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,为1.故选D.
7、D
【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、因为32+52≠92,所以不能组成直角三角形;
B、因为42+62≠82,所以不能组成直角三角形;
C、因为132+142≠152,所以不能组成直角三角形;
D、因为82+152=172,所以能组成直角三角形.
故选:D.
此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
8、A
【解析】
由直线y=2x+4与y轴交于点B,可得OB=4,再根据△OBC是以OB为底的等腰三角形,可得点C的纵坐标为2,依据△OBC沿y轴折叠,使点C恰好落在直线AB上,即可得到点C的横坐标为1.
【详解】
解:∵直线y=2x+4与y轴交于点B,
∴B(0,4),
∴OB=4,
又∵△OBC是以OB为底的等腰三角形,
∴点C的纵坐标为2,
∵△OBC沿y轴折叠,使点C恰好落在直线AB上,
∴当y=2时,2=2x+4,
解得x=-1,
∴点C的横坐标为1,
∴点C的坐标为(1,2),
故选:A.
本题考查了等腰三角形的性质、翻折变换的性质、一次函数的性质;熟练掌握翻折变换和等腰三角形的性质是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、13
【解析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=
故答案是:13.
本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.
10、
【解析】
求出tan30°,根据倒数的概念计算即可.
【详解】
,
,
则的倒数是,
故答案为:.
本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.
11、10
【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
【详解】
如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R−2)2,
解得R=5,
∴该光盘的直径是10cm.
故答案为:10.
此题考查了切线的性质及垂径定理,建立数学模型是关键.
12、8
【解析】
∵在菱形ABCD的边长为4,点E是AB边的中点,DE⊥AB,
∴AE=AB=2,AD=4,∠AED=90°,
∴DE=,
∴S菱形ABCD=AB·DE=.
故答案为:.
13、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半得出ED=BC,FD=BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.
【详解】
解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,
∴ED=BC,FD=BC,
∴ED=FD,
又∠EDF=60°,
∴△EDF是等边三角形,
∴ED=FD=EF=4,
∴BC=2ED=1.
故答案为1.
本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、7;(吨);众数或中位数较合理,
【解析】
(1)根据加权平均数计算平均数;众数即出现次数最多的数据,中位数应是第15个和第15个数据的平均数;
(2)根据样本平均数估计总体平均数,从而计算该社区的月用水量;
(3)因为这组数据中,极差较大,用平均数不太合理,所以选用众数或中位数,有代表性.
【详解】
这户家庭月用水量的平均数(吨)
出现了次,出现的次数最多,则众数是,
∵共有个数,
∴中位数是第、个数的平均数,
∴中位数是(吨),
∵社区共户家庭,
∴该社区的月用水量(吨);
众数或中位数较合理.
因为满足大多数家庭用水量,另外抽样的户家庭用水量存在较大数据影响了平均数.
本题主要考查了众数、中位数、平均数的定义,解本题的要点在于掌握平均数的计算方法,理解众数和中位数的概念,能够正确找到众数和中位数,学会运用平均数、众数和中位数解决实际问题.
15、(1);(1)见解析;(3)
【解析】
(1)分别令y=0,x=0求解即可;
(1)根据两点确定一条直线过点A和点B作一条直线即为函数的图象;
(3)结合图象可知y>0时x的取值范围即为函数图象在x轴上方部分对应的自变量的取值范围.
【详解】
解:(1)令y=0,则x=1,
令x=0,则y=1,
所以点A的坐标为(1,0),
点B的坐标为(0,1);
(1)如图:
(3)当y>0时,x的取值范围是x<1
故答案为:x<1.
本题考查了一次函数图象与坐标轴的交点问题,一次函数与一元一次不等式,画出一次函数的图象,数形结合是解题的关键.
16、(1)见解析;(2),;(3)①;②
【解析】
(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;
(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;
(3)①求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;
②易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.
【详解】
(1)证明:∵Rt△OAB中,D为OB的中点,
∴AD=OB,OD=BD=OB,
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,
∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;
(2)解:在Rt△AOB中,∠AOB=30°,OB=8,
∴AB=4,
∴OA=,
∵四边形ABCE是平行四边形,
∴PB=PE,PC=PA,
∴PB=,
∴
∴,
即
∴;
(3)①∵C(0,4),
设直线AC的解析式为y=kx+4,
∵P(,0),
∴0=k+4,
解得,k=,
∴y=x+4,
∵∠APM=90°,
∴直线PM的解析式为y=x+m,
∵P(,0),
∴0=×+m,
解得,m=-3,
∴直线PM的解析式为y=x-3,
设M(x,x-3),
∵AP=,
∴(x-)2+(x-3)2=()2,
化简得,x2-4x-4=0,
解得,x1=,x2=(不合题意舍去),
当x=时,y=×()-3=,
∴M(,),
故答案为:(,);
②∵
∴直线BC的解析式为:,
联立,解得,
∴,
本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.
17、 (1) 400,100;(2) 36°;(3) 81.6万人
【解析】
(1)由等级C的人数除以占的百分比,得出调查总人数即可,进而确定出等级B与等级D的人数,进而求出m与n的值;
(2)由D占的百分比,乘以360即可得到结果;
(3)根据题意列式计算即可得到结论.
【详解】
解:(1)m=140÷14%×40%=400;n=140÷14%﹣280﹣400﹣140﹣80=100;
条形统计图如下:
故答案为:400,100;
(2)扇形统计图中“D”所对应的圆心角的度数是 ×360°=36°;
故答案为:36°;
(3) ×120=81.6万人,
答:其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数81.6万人
此题考查统计表,扇形统计图,条形统计图,解题关键在于看懂图中数据
18、(1);;(2)图详见解析;(3)3
【解析】
(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;
(2)根据题意描出相应的点,再连线即可;
(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.
【详解】
解:(1)把A(1,2)代入中,得,
∴正比例函数的表达式为;
把A(1,2),B(3,0)代入中,得
,
解得:,
所以一次函数的表达式为;
(2)如图所示.
(3)由题意可得:.
本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据正比例函数的定义可得|m|-1=1,m+2≠0.
【详解】
因为函数是正比例函数,
所以|m|-1=1,m+2≠0
所以m=2
故答案为2
考核知识点:正比例函数的定义.理解定义是关键.
20、3
【解析】
由菱形的周长为24,可求菱形的边长为6,则可以求EF.
【详解】
解:∵菱形ABCD的周长是24,∴AB=AB=BC=DC=24÷4=6,∵F为对角线AC、BD交点,∴F为DB的中点,又∵E为AD的中点,∴EF=AB=3,故答案为3.
本题考查了菱形的性质,熟练掌握并灵活运用是解题的关键.
21、6
【解析】
∵OA=3OD,OB=3OC,
∴,
∵AD与BC相交于点O,
∴∠AOB=∠DOC,
∴△AOB∽△DOC,
∴,
∵CD=2,
∴.
故本题应填写:6.
22、1
【解析】
方程两边都乘以化为整式方程,表示出方程的解,依据增根为,即可求出的值.
【详解】
解:方程去分母得:,
解得:,
由方程有增根,得到,
则的值为1.
故答案为:1.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
23、32
【解析】
根据AE⊥BC,∠B=45°知△AEB为等腰直角三角形.在Rt△AEB中,根据勾股定理即可得出AE的长度,根据面积公式即可得出菱形ABCD的面积.
【详解】
四边形ABCD为菱形,则AB=BC=CD=DA=8cm,
∵AE⊥BC且∠B=45°,
∴△AEB为等腰直角三角形,
∴AE=BE,
在△AEB中,根据勾股定理可以得出+=,
∴2=,
∴AE====4,
∴菱形ABCD的面积即为BC×AE=8×4=32.
本题目主要考查菱形的性质及面积公式,本题的解题关键在于通过勾股定理得出菱形的高AE的长度.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)当∠BAC=150°时,四边形ADEF是矩形;(3)∠BAC=60°时,这样的平行四边形ADEF不存在.
【解析】
(1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;
(2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF是矩形,求出∠DAF=90°,根据矩形的判定推出即可;
(3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.
【详解】
(1)证明:∵△ABD、△BCE和△ACF是等边三角形,
∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,
∴∠DBE=∠ABC=60°﹣∠EBA,
在△DBE和△ABC中
,
∴△DBE≌△ABC,
∴DE=AC,
∵AC=AF,
∴DE=AF,
同理AD=EF,
∴四边形ADEF是平行四边形;
(2)解:当∠BAC=150°时,四边形ADEF是矩形,
理由是:∵△ABD和△ACF是等边三角形,
∴∠DAB=∠FAC=60°,
∵∠BAC=150°,
∴∠DAF=90°,
∵四边形ADEF是平行四边形,
∴四边形ADEF是矩形;
(3)解:这样的平行四边形ADEF不总是存在,
理由是:当∠BAC=60°时,∠DAF=180°,
此时点D、A、F在同一条直线上,此时四边形ADEF就不存在.
本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,难度适中.
25、(1)y=,点C(6,1);(2).
【解析】
(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,
(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.
【详解】
解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,
∴n=6,
∴点A(1,6)代入y=得,
k=6,
∴反比例函数y=,
当x=时,y=12,
∴点D(,12)代入直线l2:y=﹣2x+b得,
b=13,
∴直线l2:y=﹣2x+13,
由题意得:解得:,,
∴点C(6,1)
答:反比例函数解析式y=,点C的坐标为(6,1).
(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)
∴S△OCD=S△BOE﹣S△BOD﹣S△OCE
答:△OCD的面积为.
本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.
26、(1)见详解;(2),证明见详解.
【解析】
(1)延长CE交AB于点G,证明,可得,结合题目条件利用中位线中的平行即可求证;
(2)根据已知条件易得,根据全等可得,从而得到之间的数量关系.
【详解】
(1)延长CE交AB于点G,如图所示:
∵平分
∴
在中
∵点为边的中点
∴
∴DE为的中位线
∴
∵
∴四边形是平行四边形
(2)∵四边形是平行四边形
∴
∵D、E分别是BC、GC的中点
本题考查了平行四边形的判定和性质,全等三角形的性质,中位线的性质等知识点,解题的关键在于判断四边形是平行四边形,DE为的中位线,,从而可解此题.
题号
一
二
三
四
五
总分
得分
月用水量(吨)
户数
组别
获取新闻的最主要途径
人数
A
电脑上网
280
B
手机上网
m
C
电视
140
D
报纸
n
E
其它
80
2024-2025学年湖南省长沙市雅礼实验中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市雅礼实验中学数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省浠水县巴河镇中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年湖北省浠水县巴河镇中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省永春县第一中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年福建省永春县第一中学数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。