年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年江苏省淮阴中学数学九年级第一学期开学教学质量检测模拟试题【含答案】

    2024-2025学年江苏省淮阴中学数学九年级第一学期开学教学质量检测模拟试题【含答案】第1页
    2024-2025学年江苏省淮阴中学数学九年级第一学期开学教学质量检测模拟试题【含答案】第2页
    2024-2025学年江苏省淮阴中学数学九年级第一学期开学教学质量检测模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省淮阴中学数学九年级第一学期开学教学质量检测模拟试题【含答案】

    展开

    这是一份2024-2025学年江苏省淮阴中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)直角三角形的边长分别为a,b,c,若a2=9,b2=16,那么c2的值是( )
    A.5B.7C.25D.25或7
    2、(4分)如果点在第四象限,那么m的取值范围是( ).
    A.B.C.D.
    3、(4分)如图,、分别是平行四边形的边、上的点,且,分别交、于点、.下列结论:①四边形是平行四边形;②;③;④,其中正确的个数是( )
    A.1个B.2个
    C.3个D.4个
    4、(4分)在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程(米)与时间(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )
    A.这次比赛的全程是500米
    B.乙队先到达终点
    C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快
    D.乙与甲相遇时乙的速度是375米/分钟
    5、(4分)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是( )
    A.(1+x)2=B.(1+x)2=
    C.1+2x=D.1+2x=
    6、(4分)下列四个二次根式中,是最简二次根式的是( )
    A.B.C.D.
    7、(4分)如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为( )
    A.B.
    C.D.
    8、(4分)D、E是△ABC的边AB、AC的中点,△ABC、△ADE的面积分别为S、S1,则下列结论中,错误的是( )
    A.DE∥BCB.DE=BCC.S1=SD.S1=S
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)现有两根长6分米和3分米的木条,小华想再找一根木条为老师制作一个直角三角形教具,则第三根木条的长度应该为___分米.
    10、(4分)如图,在平行四边形中,对角线、相交于点,若,,sin∠BDC=,则平行四边形的面积是__________.
    11、(4分)分解因式:______.
    12、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_________________.
    13、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.
    (1)该水果店主购进第一批这种水果的单价是多少元?
    (2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
    15、(8分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.
    (1) ①依题意补全图形;②求证:BE⊥AC.
    (2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为 (直接写出答案).
    16、(8分)深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.
    (1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?
    (2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?
    17、(10分)为了解市民对“雾霾天气的主要原因”的认识,某调查公司随机抽查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.
    调查结果扇形统计图
    请根据图表中提供的信息解答下列问题:
    (1)填空:__________,__________.扇形统计图中组所占的百分比为__________%.
    (2)若该市人口约有100万人,请你估计其中持组“观点”的市民人数约是__________万人.
    (3)若在这次接受调查的市民中,随机抽查一人,则此人持组“观点”的概率是__________.
    18、(10分)解下列一元二次方程
    (1)
    (2)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)当a__________时,分式有意义.
    20、(4分)如图所示,在矩形ABCD中,DE⊥AC于E,∠ADE:∠EDC=3:2,则∠BDE的度数是_____.
    21、(4分)已知m+3n的值为2,则﹣m﹣3n的值是__.
    22、(4分)李老师到超市买了xkg香蕉,花费m元钱;ykg苹果,花费n元钱.若李老师要买3kg香蕉和2kg苹果共需花费_____元.
    23、(4分)如图,△ABC中,∠ACB=90°,CD是斜边上的高,AC=4,BC=3,则CD=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.
    (1)求证△CBE≌△ACD
    (2)求线段BE的长

    25、(10分)已知一条直线AB经过点(1,4)和(-1,-2)
    (1)求直线AB的解析式.
    (2)求直线AB和直线CD:y=x+3的交点M的坐标.
    26、(12分)为鼓励学生积极参加体育锻炼,某学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生所穿运动鞋的号码,绘制了如下的统计图①和图②(不完整).请根据相关信息,解答下列问题:
    (1)本次接受随机抽样调查的学生人数为 ,图①中m的值为 ;
    (2)请补全条形统计图,并求本次调查样本数据的众数和中位数;
    (3)根据样本数据,若学校计划购买400双运动鞋,建议购买35号运动鞋多少双?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    此题有两种情况:①当a,b为直角边,c为斜边,由勾股定理求出c2即可;②当a,c为直角边,b为斜边,利用勾股定理即可求解;即可得出结论.
    【详解】
    解:当b为直角边时,c2=a2+b2=25,
    当b为斜边时,c2=b2﹣a2=7,
    故选:D.
    此题主要考查学生对勾股定理的理解和掌握;解答此题要用分类讨论的思想,学生容易忽略a,c为直角边,b为斜边时这种情况,很容易选A,因此此题是一道易错题.
    2、D
    【解析】
    横坐标为正,纵坐标为负,在第四象限.
    【详解】
    解:∵点p(m,1-2m)在第四象限,
    ∴m>0,1-2m<0,解得:m>,故选D.
    坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.
    3、D
    【解析】
    根据平行四边形的性质即可判断.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,又,
    ∴四边形是平行四边形①正确;
    ∴AE=CF,∠EAG=∠FCH,又∠AGE=∠BGC=∠CHF,
    ∴,②正确;
    ∴EG=FH,故BE-EG=DF-FH,故,③正确;
    ∵,∴,故④正确
    故选D.
    此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质与全等三角形的判定与性质.
    4、C
    【解析】
    由横纵坐标可判断A、B,观察图象比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面可判断C,由图象得乙队在1.1至1.9分钟的路程为300米,可判断D.
    【详解】
    由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;
    由横坐标可以看出,乙队先到达终点,故选项B正确;
    ∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,
    ∴乙队的速度比甲队的速度慢,故C选项错误;
    ∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500-200=300(米),加速的时间是1.9-1.1=0.8(分钟),
    ∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.
    故选C.
    本题主要考查一次函数的图象与实际应用,观察图象理解图象中每个特殊点的实际意义是解题的关键.
    5、B
    【解析】
    股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.
    【详解】
    解:假设股票的原价是1,平均增长率为.
    则90%(1+x)2=1,
    即(1+x)2=,
    故选B.
    此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x后是原来价格的(1+x)倍.
    6、D
    【解析】
    根据最简二次根式的定义,可得答案.
    【详解】
    A. 被开方数含能开得尽方的因数=3,故A不符合题意;
    B. 被开方数含分母,故B不符合题意;
    C. 被开方数含能开得尽方的因数=2,故C不符合题意;
    D. 被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;
    故选:D
    此题考查最简二次根式,解题关键在于掌握运算法则
    7、B
    【解析】
    比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.
    【详解】
    解:k>0时,一次函数y=﹣kx+1的图象经过第一、二、四象限,反比例函数的两个分支分别位于第一、三象限,选项B符合;
    k<0时,一次函数y=﹣kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限,无选项符合.
    故选:B.
    考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
    8、D
    【解析】
    由D、E是△ABC的边AB、AC的中点得出DE是△ABC的中位线,得出DE∥BC,DE=BC,易证△ADE∽△ABC得出,即可得出结果.
    【详解】
    ∵D、E是△ABC的边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,DE=BC,
    ∵DE∥BC,∠A=∠A,
    ∴△ADE∽△ABC,
    ∴,
    即S1=S,
    ∴D错误,
    故选:D.
    考查了相似三角形的判定与性质、三角形中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、或3
    【解析】
    根据勾股定理解答即可.
    【详解】
    解:第三根木条的长度应该为或分米;
    故答案为或3..
    此题考查勾股定理,关键是根据勾股定理解答.
    10、1
    【解析】
    作CE⊥BD,利用三角函数求出CE,即可算出△BCD的面积,从而得出平行四边形ABCD的面积.
    【详解】
    如图所示,过点C作CE⊥BD交BD于E,
    ∵CD=AB=4, sin∠BDC=,
    ∴CE=,
    ∴S△BCD=,
    ∴S平行四边形ABCD=2 S△BCD=1.
    故答案为:1.
    本题考查三角函数与几何的应用,关键在于通过三角函数求出高.
    11、
    【解析】
    根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
    【详解】
    ,
    =,
    =,
    故答案为:.
    本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
    12、甲
    【解析】
    根据方差的意义即可得出结论.
    【详解】
    根据方差的定义,方差越小数据越稳定,因为=0.4,=3.2, =1.6,
    方差最小的为甲,所以本题中成绩比较稳定的是甲,
    故答案为甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    13、
    【解析】
    设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
    【详解】
    解:设雕像的下部高为x m,则题意得:,
    整理得:,
    解得: 或 (舍去);
    ∴它的下部应设计的高度为.
    故答案为:.
    本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、(1)水果店主购进第一批这种水果的单价是20元;(2)a的最大值是1.
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验;
    (2)根据题意可以得到关于a的不等式,从而可以求得a的最大值.
    【详解】
    (1)设第一批水果的单价是x元,

    解得,x=20,
    经检验,x=20是原分式方程的解,
    答:水果店主购进第一批这种水果的单价是20元;
    (2)由题意可得,

    解得,a≤1,
    答:a的最大值是1.
    本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,利用分式方程和不等式的性质解答.
    15、(1)①见解析;②见解析;(2)
    【解析】
    (1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;
    (2)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.
    【详解】
    (1)①依题意补全图形,如图1所示.
    ②证明:连接CE,如图2所示.
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,AB=BC,
    ∴∠ACB=∠ACD=∠BCD=45°,
    ∵∠CMN=90°,CM=MN,
    ∴∠MCN=45°,
    ∴∠ACN=∠ACD+∠MCN=90°.
    ∵在Rt△ACN中,点E是AN中点,
    ∴AE=CE=AN.
    ∵AE=CE,AB=CB,
    ∴点B,E在AC的垂直平分线上,
    ∴BE垂直平分AC,
    ∴BE⊥AC.
    (2)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.
    ∵∠BDC=45°,∠DCN=45°,
    ∴BD∥CN,
    ∴四边形DFCN为梯形.
    ∵AB=1,
    ∴CF=DF=BD=,CN=,
    ∴S梯形DFCN=(DF+CN)•CF=(+)×=.
    故答案为:.
    此题考查正方形的性质,等腰直角三角形的性质,平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.根据题意画出图形,利用数形结合解决问题是关键.
    16、(1)甲工程队单独完成需要12天;(2)A种清洁剂最少应购买1瓶
    【解析】
    (1)可设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,根据工作总量的等量关系,列出方程即可求解;
    (2)可设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,根据购买总费用不多于780元,列出不等式即可求解.
    【详解】
    解:(1)设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,
    依题意有,解得x=12,
    经检验,x=12是原方程的解.
    故甲工程队单独完成此工程需要12天;
    (2)设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,
    依题意有6a+9(100-a)≤780,
    解得a≥1.
    故A种清洁剂最少应购买1瓶.
    考查了分式方程的应用,一元一次不等式的应用,分析题意,找到关键描述语,找到合适的等量关系和不等关系是解决问题的关键.
    17、50 130 16% 28 0.26
    【解析】
    (1)求得总人数,然后根据百分比的定义即可求得;
    (2)利用总人数100万,乘以所对应的比例即可求解;
    (3)利用频率的计算公式即可求解.
    【详解】
    解:(1)总人数是:100÷20%=500(人),则m=500×10%=50(人),
    C组的频数n=500﹣100﹣50﹣140﹣80=130(人),
    E组所占的百分比是:×100%=16%;
    故答案为:50,130,16%;
    (2)100×=28(万人);
    所以持D组“观点”的市民人数为28万人;
    (3)随机抽查一人,则此人持C组“观点”的概率是.
    答:随机抽查一人,则此人持C组“观点”的概率是.
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.
    18、(1),;(2),.
    【解析】
    (1)将方程左边因式分解,继而求解可得;
    (2)运用配方法求解即可.
    【详解】
    (1)∵(x+3)(x+7)=0,
    ∴x+3=0或x+7=0,
    解得:,;
    (2)



    ∴ .
    本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据分式有意义的条件可得,再解不等式即可.
    【详解】
    解:分式有意义,
    则;
    解得:,
    故答案为:.
    此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
    20、18°
    【解析】
    根据矩形的性质及角度的关系即可求解.
    【详解】
    ∵,∠ADC=90°,
    ∴∠EDC=36°,

    ∴∠DCE=54°,
    ∵CO=DO,∴∠ODC=∠DCE=54°,
    ∴=∠ODC-∠EDC=18°
    此题主要考查矩形的性质,解题的关键是熟知继续对角线互相平分且相等.
    21、.
    【解析】
    首先将原式变形,进而把已知代入,再利用二次根式的性质化简进而计算得出答案.
    【详解】
    解:∵m+3n=,
    ∴﹣m﹣3n
    =
    =
    =,
    故答案为:.
    本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和整体代入思想的运用.
    22、
    【解析】
    根据题意可以列出相应的代数式,本题得以解决.
    【详解】
    由题意可得:李老师要买3kg香蕉和2kg苹果共需花费:()(元).
    故答案为.
    本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
    23、2.4
    【解析】
    在Rt中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.
    【详解】
    解:Rt中,AC=4m,BC=3m
    AB=m

    ∴m=2.4m
    故答案为2.4 m
    本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)见解析;(2)2cm
    【解析】
    (1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;
    (2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD-DE.
    【详解】
    (1)证明:∵AD⊥CE,∠ACB=90°,
    ∴∠ADC=∠ACB=90°,
    ∴∠BCE=∠CAD(同角的余角相等),
    在△ADC与△CEB中
    ,
    ∴△ADC≌△CEB(AAS);
    (2)解:由(1)知,△ADC≌△CEB,
    则AD=CE=5cm,CD=BE.
    ∵CD=CE-DE,
    ∴BE=AD-DE=5-3=2(cm),
    即BE的长度是2cm.
    考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
    25、(1)y=3x+1;(2)M(1,4).
    【解析】
    分析:设直线解析式为y=kx+b,然后把两个点的坐标代入得到关于k、b的方程组,然后解方程组即可.
    详解:(1)设直线解析式为y=kx+b,
    把(1,4)和(-1,-2)分别代入得 ,解得 ,
    所以直线解析式为y=3x+1.
    (2)由题意得 ,解得:,∴M(1,4).
    点睛:本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    26、 (1) 40,15;(2)见解析;(3)120双
    【解析】
    (1)根据统计图中的数据可以得到调查的总人数和m的值;
    (2)根据(1)中的结果可以求得34号运动鞋的人数,从而可以将条形统计图补充完整,进而得到相应的众数和中位数;
    (3)根据统计图中的数据可以解答本题.
    【详解】
    (1)12÷30%=40,
    m%=×100%=15%,
    故答案为:40,15;
    (2)34号运动鞋为:40-12-10-8-4=6,
    补全的条形统计图如图所示,
    由条形统计图可得,本次调查样本数据的众数和中位数分别是:35号、36号;
    (3)400×30%=120(双),
    答:建议购买35号运动鞋120双.
    考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    题号





    总分
    得分
    批阅人
    组别
    观点
    频数(人数)
    大气气压低,空气不流动
    100
    底面灰尘大,空气湿度低
    汽车尾气排放
    工厂造成的污染
    140
    其他
    80

    相关试卷

    2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉市七一(华源)中学数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年湖北省武汉市七一(华源)中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map