- 沪科版2024-2025学年九年级数学上册精品题型特训专题21.10确定二次函数的解析式【九大题型】(学生版+解析) 试卷 0 次下载
- 沪科版2024-2025学年九年级数学上册精品题型特训专题21.11二次函数中的存在性问题【十三大题型】(学生版+解析) 试卷 0 次下载
- 沪科版2024-2025学年九年级数学上册精品题型特训专题21.7反比例函数的性质【十大题型】(学生版+解析) 试卷 0 次下载
- 沪科版2024-2025学年九年级数学上册精品题型特训专题21.12反比例函数k的几何意义与面积之间的关系【十大题型】(学生版+解析) 试卷 0 次下载
- 沪科版2024-2025学年九年级数学上册精品题型特训专题21.13反比例函数与几何图形【九大题型】(学生版+解析) 试卷 0 次下载
初中数学沪科版(2024)九年级上册第21章 二次函数与反比例函数21.5 反比例函数巩固练习
展开TOC \ "1-3" \h \u
\l "_Tc17584" 【题型1 用反比例函数描述数量关系】 PAGEREF _Tc17584 \h 1
\l "_Tc8490" 【题型2 反比例函数的概念】 PAGEREF _Tc8490 \h 2
\l "_Tc2477" 【题型3 反比例函数图象上点的坐标特征】 PAGEREF _Tc2477 \h 2
\l "_Tc4415" 【题型4 判断反比例函数图象】 PAGEREF _Tc4415 \h 3
\l "_Tc18026" 【题型5 由反比例函数图象的对称性求值】 PAGEREF _Tc18026 \h 4
\l "_Tc21941" 【题型6 由反比例函数的图象求比例系数】 PAGEREF _Tc21941 \h 6
\l "_Tc9252" 【题型7 由比例系数求图形的面积】 PAGEREF _Tc9252 \h 7
\l "_Tc27091" 【题型8 由图形的面积求比例系数】 PAGEREF _Tc27091 \h 9
\l "_Tc21501" 【题型9 反比例函数图象中的规律探究】 PAGEREF _Tc21501 \h 10
\l "_Tc14667" 【题型10 反比例函数图象中的存在性问题】 PAGEREF _Tc14667 \h 12
知识点1:反比例函数的定义
一般的,形如的函数,叫做反比例函数。其中是自变量,是函数。
自变量的取值范围是不等于0的一切实数。
【题型1 用反比例函数描述数量关系】
【例1】(23-24八年级·山东烟台·期末)下列问题中两个变量之间的关系不是反比例函数的是( )
A.某人参加800m赛跑时,时间t与跑步平均速度v之间的关系
B.长方形的面积一定,它的两条邻边的长y与x之间的关系
C.压强公式p=FS中,F一定时,压强p与受力面积S之间的关系
D.三角形的一条边长一定时,它的面积与这条边上的高之间的关系
【变式1-1】(23-24八年级·河北保定·期末)建设中的G107马头南至冀豫界段是我省“十四五”建设项目,其某段施工需运送土石方104m3,则土石方日运送量Vm3天与完成运送任务所需时间t(天)满足( )
A.反比例函数关系B.正比例函数关系
C.一次函数关系D.二次函数关系
【变式1-2】(23-24八年级·河南洛阳·期中)如果三角形底边是a,底边上的高是h,则三角形面积S=12aℎ.那么下列说法错误的是( )
A.当a为定长时,S是h的一次函数B.当h为定长时,S是a的一次函数
C.当S确定时,a是h的一次函数D.当S确定时,h是a的反比例函数
【变式1-3】(23-24八年级·安徽宣城·期末)已知y=y1+y2,若y1与x−1成正比例,y2与x+1成反比例,当x=0时,y=−5;当x=2时,y=1.
(1)求y与x的函数关系式;
(2)求当x=−2时,y的值.
【题型2 反比例函数的概念】
【例2】(23-24八年级·江苏扬州·阶段练习)已知关于x的反比例函数y=(m−2)xm−1,则m= .
【变式2-1】(23-24八年级·江苏淮安·阶段练习)已知反比例函效y=k−1x,则k不可以取下列的哪个值( )
A.−1B.0C.1D.2
【变式2-2】(23-24八年级·全国·假期作业)下列函数中是反比例函数的是( )
A.y=x3B.y=3xC.y=x−3D.y=−3x2
【变式2-3】(23-24·江苏盐城·模拟预测)(1)学校食堂用1200元购买大米,写出所购买的大米质量ykg与单价x(元/kg)之间的函数表达式,y是x的反比例函数吗?
(2)水池中蓄水90m3,现用放水管xm3/h的速度排水,经过yh排空.写出y与x之间的函数表达式,y是x的反比例函数吗?
【题型3 反比例函数图象上点的坐标特征】
【例3】(23-24·河北石家庄·模拟预测)已知y是x的反比例函数,如表给出了x与y的一些值.
(1)反比例函数的比例系数是 .
(2)表中“▲”处的数为 .
【变式3-1】(23-24八年级·江苏盐城·期中)点A(m,2)在反比例函数y=4x的图像上,则m的值为 .
【变式3-2】(23-24·陕西咸阳·三模)已知点Ax1,y1,Bx2,y2都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为 .
【变式3-3】(23-24八年级·江苏扬州·期末)已知反比例函数y=kx的图像经过点A2,−4,则B12,−16 这个函数图像上.(填“在”或“不在”)
知识点2:反比例函数的图象与性质
1、图象:由两条曲线组成(双曲线)
2、性质:
【题型4 判断反比例函数图象】
【例4】(23-24八年级·湖南岳阳·期末)如图所示,该函数表达式可能是( )
A.y=3x2B.y=3xC.y=−3xD.y=3x
【变式4-1】(23-24八年级·江苏泰州·期末)当菱形的面积一定时,它的两条对角线的长分别为x、y.选取5组数对x,y,在坐标系中进行描点,则正确的是( )
A.B.
C.D.
【变式4-2】(23-24八年级·河南南阳·阶段练习)如图是三个反比例函数y1=k1x,y2=k2x,y3=k3x在y轴右侧的图象,则k1,k2,k3的大小关系为 .
【变式4-3】(23-24·云南·模拟预测)定义新运算:p⊕q=pq,(q>0)−pq,(q<0)例如:3⊕5=35,3⊕(−5)=35,则y=2⊕x(x≠0)的图象是( )
A.B.
C.D.
【题型5 由反比例函数图象的对称性求值】
【例5】(23-24八年级·全国·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,若正方形的边长是2,则图中阴影部分的面积等于 .
【变式5-1】(23-24·辽宁鞍山·一模)如图,直线y=kxk>0与双曲线y=4x交于A,B两点,若A2,m,则点B的坐标为( )
A.2,2B.−2,−1C.−2,−2D.−1,−4
【变式5-2】(23-24八年级·全国·专题练习)如图,点A3a,−a是反比例函数y=kx的图象与⊙O的一个交点,图中阴影部分的面积为4π,则反比例函数的解析式为 .
【变式5-3】(23-24八年级·江苏无锡·期末)如图,过原点的直线交反比例函数y=ax图象于P、Q点,过点Р分别作x轴,y轴的垂线,交反比例函数y=bxx>0的图象于A、B点,已知b−a=3,则图中阴影部分的面积为 ;且当S△APB=3时,b的值为 .
【题型6 由反比例函数的图象求比例系数】
【例6】(23-24八年级·浙江杭州·期末)在平面直角坐标系中,反比例函数 y=kxk≠0的图象如图所示,则k的值可能是( )
A.1B.2C.3D.4
【变式6-1】(23-24八年级·江苏扬州·期末)如图,反比例函数y=kx的图象经过平行四边形ABCD的顶点C,D,若点A、点B、点C的坐标分别为3,0,0,4,a,6,则k的值是 .
【变式6-2】(23-24八年级·江苏扬州·期末)如图,反比例函数y=kx的图象经过平行四边形ABCD的顶点C,D,若点A、点B、点C的坐标分别为3,0,0,4,a,6,则k的值是 .
【变式6-3】(23-24八年级·广西南宁·阶段练习)如图,点A的坐标是−2,0,点B的坐标是0,6,C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A'B'C'.若反比例函数y=kx的图像恰好经过A'B的中点D,则k= .
知识点3:反比例函数比例系数k的几何意义
如图,在反比例函数上任取一点,过这一点分别作轴,轴
的垂线,与坐标轴围成的矩形的面积
【题型7 由比例系数求图形的面积】
【例7】(23-24八年级·浙江台州·期末)如图,正六边形ABCDEF的顶点A在y轴上,边BC与x轴重合.反比例函数y=3x的图象经过正六边形的中心G,则正六边形ABCDEF的面积等于 .
【变式7-1】(23-24八年级·广东揭阳·期末)如图,A、B是反比例函数y=6x图象上两点,AC和BD都与坐标轴垂直,垂足分别为C,D,OD=1,OC=2,AC与BD交于点P,则△AOB的面积为( )
A.4B.6C.8D.10
【变式7-2】(23-24八年级·湖南邵阳·期末)如图,直线y=−x与反比例函数y=−6x的图象相交于A、B两点,过A、B两点分别作y轴的垂线,垂足分别为点C、D,连接AD,BC,则四边形ACBD的面积为( )
A.4B.8C.12D.24
【变式7-3】(23-24八年级·浙江宁波·期末)如图, △OAC 和 △BAD 都是等腰直角三角形, ∠ACO=∠ADB=90∘ ,反比例函数 y=4x 在第一象限的图象经过点 B ,则 △OAC 与 △BAD 的面积之差为 .
【题型8 由图形的面积求比例系数】
【例8】(23-24八年级·浙江宁波·期末)如图,点D是▱ABCD内一点,CD//x轴,BD//y轴,BD=2,∠ADB=135°,S△ABD=2,若反比例函数y=kx(x<0)的图像经过A、D两点,则k的值是 .
【变式8-1】(23-24八年级·山东威海·期末)如图所示,在平面直角坐标系中,四边形OABC为矩形,点A、C分别在x轴、y轴上,点B在函数y1=−8x的图象上,边AB与函数y2=kx的图象交于点D,已知阴影部分ODBC的面积为6,则k=( ).
A.2B.−4C.4D.−2
【变式8-2】(23-24八年级·辽宁·阶段练习)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴,y轴上,对角线BD∥x轴,反比例函数y=kxk>0,x>0的图象经过矩形对角线的交点E,若点A1,0,D0,2,则k的值为 .
【变式8-3】(23-24八年级·浙江金华·期末)如图,在平面直角坐标系中,四边形ABCD是菱形,BC∥x轴.AD与y轴交于点E,反比例函数 y=kx(x>0)的图象经过顶点 C、D.已知点C的横坐标为5,BE=2DE,则k的值为 .
【题型9 反比例函数图象中的规律探究】
【例9】(23-24·河北张家口·二模)如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y=kx(x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律,作出矩形B18A17A18P19时,落在反比例函数图象上的顶点P19的坐标为( )
A.(218,1218)B.(1218,218)C.(215,1215)D.(1215,215)
【变式9-1】(23-24·湖北武汉·模拟预测)某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变,在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如下表:(动力×动力臂=阻力×阻力臂)
请根据表中数据规律探求,当动力臂L长度为2.0m时,所需动力最接近的是( )
A.300NB.180NC.150ND.120N
【变式9-2】(23-24·辽宁·一模)如图,点B11,33在直线l2:y=33x上,过点B1作A1B1⊥l1交直线l:y=3x于点A1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,过C1的反比例函数为y=k1x;再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,过C2的反比例函数为y=k2x,…,按此规律进行下去,则第n个反比例函数的kn= .(用含n的代数式表示)
【变式9-3】(23-24八年级·湖南·阶段练习)如图,在反比例函数y=4x的图象上有A2,m、B两点,连接AB,过这两点分别作x轴的垂线交x轴于点C、D,已知BD=12AC,点F1是CD的中点,连接AF1、BF1,得到△AF1B;点F2是DF1的中点,连接AF2、BF2,得到△AF2B;……按照此规律继续进行下去,则△AFnB的面积为 .(用含正整数n的式子表示)
【题型10 反比例函数图象中的存在性问题】
【例10】(23-24八年级·河南周口·期末)如图,四边形OABC是面积为4的正方形,函数y=kx(x>0)的图象经过点B.
(1)k的值为______.
(2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC',正方形NA'BC.设线段MC',NA'分别与函数y=kx(x>0)的图象交于点E,F,连接OE,OF,EF.
①求△OEF的面积;
②在x轴上是否存在点P,使△PEF为直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.
【变式10-1】(23-24八年级·浙江·专题练习)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于A,BC⊥y轴于C,BA=3,BC=5,有一反比例函数图象刚好过点B.
(1)分别求出过点B的反比例函数和过A,C两点的一次函数的表达式.
(2)动点P在射线CA(不包括C点)上,过点P作直线l⊥x轴,交反比例函数图象于点D.是否存在这样的点Q,使得以点B,D,P,Q为顶点的四边形为菱形?若存在,求出点Q的坐标;若不存在,请说明理由.
【变式10-2】(23-24·四川成都·一模)如图,在平面直角坐标系xOy中,一次函数y=x+2与反比例函数y=kx的图像交于A、B两点,其中点A的坐标为1,m.
(1)求反比例函数y=kx的函数表达式和点B的坐标.
(2)若A'是A点关于原点的对称点,连接AA',BA',求△A'AB的面积.
(3)连接OA,将线段OA绕点O顺时针旋转45°交反比例函数y=kx的图像于点C,D是x轴上一点,是否存在这样的点D,使得以O、C、D为顶点,OC为腰的等腰三角形?若存在,请写点D的坐标;若不存在,请说明理由.
【变式10-3】(23-24八年级·浙江温州·阶段练习)如图1,在平面直角坐标系中,在平面直角坐标系中,反比例函数y=kx(k>0,k为常数,x>0)的图象经过矩形OABC的顶点B4,2,顶点A,C分别在x轴,y轴的正半轴上,点D为线段AC上的一个动点,点E在直线AO上一点,点F在反比例图象上.
(1)求反比例函数表达式.
(2)如图1,若点D为对角线AC的中点时,且四边形BDEF是平行四边形,求DE长.
(3)在坐标平面内,是否存在P点,使得四边形BDPF为正方形,若存在,请求出点F的坐标,若不存在,请说明理由.x
−2
2
4
y
3
−3
▲
函数
图象
所在象限
增减性
三象限
在同一象限内,随的增大而减小
四象限
在同一象限内,随的增大而增大
越大,函数图象越远离坐标原点
动力臂(L/m)
…
0.5
1.0
1.5
2.0
2.5
…
动力(F/N)
…
600
302
200
a
120
…
专题21.6 反比例函数的图象【十大题型】
【沪科版】
TOC \ "1-3" \h \u
\l "_Tc17584" 【题型1 用反比例函数描述数量关系】 PAGEREF _Tc17584 \h 1
\l "_Tc8490" 【题型2 反比例函数的概念】 PAGEREF _Tc8490 \h 3
\l "_Tc2477" 【题型3 反比例函数图象上点的坐标特征】 PAGEREF _Tc2477 \h 5
\l "_Tc4415" 【题型4 判断反比例函数图象】 PAGEREF _Tc4415 \h 7
\l "_Tc18026" 【题型5 由反比例函数图象的对称性求值】 PAGEREF _Tc18026 \h 10
\l "_Tc21941" 【题型6 由反比例函数的图象求比例系数】 PAGEREF _Tc21941 \h 14
\l "_Tc9252" 【题型7 由比例系数求图形的面积】 PAGEREF _Tc9252 \h 18
\l "_Tc27091" 【题型8 由图形的面积求比例系数】 PAGEREF _Tc27091 \h 22
\l "_Tc21501" 【题型9 反比例函数图象中的规律探究】 PAGEREF _Tc21501 \h 27
\l "_Tc14667" 【题型10 反比例函数图象中的存在性问题】 PAGEREF _Tc14667 \h 32
知识点1:反比例函数的定义
一般的,形如的函数,叫做反比例函数。其中是自变量,是函数。
自变量的取值范围是不等于0的一切实数。
【题型1 用反比例函数描述数量关系】
【例1】(23-24八年级山东烟台·期末)下列问题中两个变量之间的关系不是反比例函数的是( )
A.某人参加800m赛跑时,时间t与跑步平均速度v之间的关系
B.长方形的面积一定,它的两条邻边的长y与x之间的关系
C.压强公式p=FS中,F一定时,压强p与受力面积S之间的关系
D.三角形的一条边长一定时,它的面积与这条边上的高之间的关系
【答案】D
【分析】本题主要考查了反比例函数的定义,对于两个变量,若它们的乘积一定,则这两个变量是反比例函数关系,据此可得答案.
【详解】解:A、由题意得,vt=800,则时间t与跑步平均速度v之间的关系是反比例函数,不符合题意;
B、由题意得,xy=S长方形面积,则长方形的面积一定,它的两条邻边的长y与x之间的关系是反比例函数,不符合题意;
C、由题意得,pS=F,则F一定时,压强p与受力面积S之间的关是反比例函数,不符合题意;
D、由题意得,S三角形=12l⋅ℎ(l为一边长,h为该边上的高),则l一定时,它的面积与这条边上的高之间的关系不是反比例函数,符合题意;
故选:D
【变式1-1】(23-24八年级·河北保定·期末)建设中的G107马头南至冀豫界段是我省“十四五”建设项目,其某段施工需运送土石方104m3,则土石方日运送量Vm3天与完成运送任务所需时间t(天)满足( )
A.反比例函数关系B.正比例函数关系
C.一次函数关系D.二次函数关系
【答案】A
【分析】根据题意,列出函数关系式,进行作答即可.本题考查反比例函数的实际应用.读懂题意,正确的列出函数关系式,是解题的关键.
【详解】解:由题意,得:V=104t,
∴V与t满足反比例函数关系.
故选:A.
【变式1-2】(23-24八年级·河南洛阳·期中)如果三角形底边是a,底边上的高是h,则三角形面积S=12aℎ.那么下列说法错误的是( )
A.当a为定长时,S是h的一次函数B.当h为定长时,S是a的一次函数
C.当S确定时,a是h的一次函数D.当S确定时,h是a的反比例函数
【答案】C
【分析】本题主要考查了一次函数和反比例函数的定义,解题的关键是熟练掌握一次函数的定义:一般地,形如y=kx+b(k、b为常数,k≠0),那么y叫做x的一次函数;反比例函数定义:一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数.根据一次函数和反比例函数定义进行求解即可.
【详解】解:三角形底边是a,底边上的高是h,则三角形面积S=12aℎ,
A.当a为定长时,S是h的一次函数,正确,不符合题意;
B.当h为定长时,S是a的一次函数,正确,不符合题意;
C.当S确定时,a是h的反比例函数,原说法错误,符合题意;
D.当S确定时,h是a的反比例函数,正确,不符合题意.
故选:C.
【变式1-3】(23-24八年级·安徽宣城·期末)已知y=y1+y2,若y1与x−1成正比例,y2与x+1成反比例,当x=0时,y=−5;当x=2时,y=1.
(1)求y与x的函数关系式;
(2)求当x=−2时,y的值.
【答案】(1)y=2x−1−3x+1
(2)y=−3
【分析】本题考查的是正比例与反比例的含义,利用待定系数法求解函数解析式,掌握待定系数法是解本题的关键;
(1)由题意可设设y1=k1x−1,y2=k2x+1,再利用待定系数法求解即可;
(2)把x=−2代入(1)中所求函数解析式即可得到答案.
【详解】(1)解:设y1=k1x−1,y2=k2x+1,
则y=k1x−1+k2x+1
∵当x=0时,y=−5;当x=2时,y=1.
∴ −k1+k2=−5k1+k23=1
解得:k1=2k2=−3
∴ y=2x−1−3x+1
(2)当x=−2时,y=2×−3−3−1=−6+3=−3.
【题型2 反比例函数的概念】
【例2】(23-24八年级·江苏扬州·阶段练习)已知关于x的反比例函数y=(m−2)xm−1,则m= .
【答案】0
【分析】此题考查了反比例函数,形如y=kxk≠0的函数是反比例函数,根据反比例函数的定义得到m−2≠0,m−1=−1,即可求得m的值.
【详解】解:∵y=(m−2)xm−1是反比例函数,
∴m−2≠0,m−1=−1,
∴m=0,
故答案为:0
【变式2-1】(23-24八年级·江苏淮安·阶段练习)已知反比例函效y=k−1x,则k不可以取下列的哪个值( )
A.−1B.0C.1D.2
【答案】C
【分析】本题考查了反比例函数的定义,根据反比例函数定义即可求解.
【详解】解:∵y=k−1x,
∴k−1≠0,即k≠1,
故选:C.
【变式2-2】(23-24八年级·全国·假期作业)下列函数中是反比例函数的是( )
A.y=x3B.y=3xC.y=x−3D.y=−3x2
【答案】B
【分析】本题考查了反比例函数的定义和方程式的变形,反比例函数解析式的一般形式y=kx(k≠0),也可转化为y=kx−1(k≠0)的形式,特别注意不要忽略k≠0这个条件.根据反比例函数:解析式的一般形式y=kx(k≠0),也可转化为y=kx−1(k≠0)的形式,可得答案.
【详解】解:A、y=x3是正比例函数,故A不合题意;
B、y=3x是反比例函数,故B符合题意;
C、y=x−3是一次函数,不是反比例函数,故C不合题意;
D、y=−3x2不是反比例函数,故D不合题意;
故选:B.
【变式2-3】(23-24·江苏盐城·模拟预测)(1)学校食堂用1200元购买大米,写出所购买的大米质量ykg与单价x(元/kg)之间的函数表达式,y是x的反比例函数吗?
(2)水池中蓄水90m3,现用放水管xm3/h的速度排水,经过yh排空.写出y与x之间的函数表达式,y是x的反比例函数吗?
【答案】(1)y=1200x,y是x的反比例函数;(2)y=90x,y是x的反比例函数
【分析】本题主要考查了列函数关系式,反比例函数的定义,一般地,形如y=kxk≠0,其中k是常数的函数叫做反比例函数:
(1)根据题意结合“质量×单价=总价”列出函数关系式,然后利用反比例函数的定义判断即可;
(2)根据“放水时间×放水速度=蓄水量” 列出函数关系式,然后利用反比例函数的定义判断即可.
【详解】解:(1)由题意得:xy=1200,
∴y=1200x,
∴y是x的反比例函数;
(2)由题意,得y=90x,
∴y是x的反比例函数.
【题型3 反比例函数图象上点的坐标特征】
【例3】(23-24·河北石家庄·模拟预测)已知y是x的反比例函数,如表给出了x与y的一些值.
(1)反比例函数的比例系数是 .
(2)表中“▲”处的数为 .
【答案】 −6 −32
【分析】本题考查了待定系数法求反比例函数关系式及反比例函数图像上的点与反比例函数解析式的对应关系,
(1)设出反比例函数的解析式为:y=kx,把x=−2,y=3代入y=kx求解即可得到k值;
(2)将x=4代入y=−6x求解即可.
【详解】设反比例函数解析式为y=kx
将x=−2,y=3代入y=kx得,k=−2×3=−6
∴反比例函数的比例系数是−6;
(2)∵k=−6
∴y=−6x
当x=4时,y=−64=−32,
∴中“▲”处的数为−32.
故答案为:−6,−32.
【变式3-1】(23-24八年级·江苏盐城·期中)点A(m,2)在反比例函数y=4x的图像上,则m的值为 .
【答案】2
【分析】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标符合函数的解析式.将点A(m,2)代入反比例函数y=4x,即可求出m的值.
【详解】解:把A(m,2)代入y=4x得:2m=4,
解得m=2,
故答案为:2.
【变式3-2】(23-24·陕西咸阳·三模)已知点Ax1,y1,Bx2,y2都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为 .
【答案】−8
【分析】本题主要考查反比例函数的图象上点的特征,掌握反比例函数图象上点的坐标之积等于k是解题的关键.因为A、B都在反比例函数的图象上,可知x1y1=4,x2y2=4,把已知x1⋅x2=−2代入可求得y1⋅y2的值.
【详解】解:∵点Ax1,y1,Bx2,y2都在反比例函数y=4x的图象上,
∴x1y1=4,x2y2=4,
∴x1y1x2y2=16,
且x1⋅x2=−2,
∴y1⋅y2=−8.
故答案为:−8.
【变式3-3】(23-24八年级·江苏扬州·期末)已知反比例函数y=kx的图像经过点A2,−4,则B12,−16 这个函数图像上.(填“在”或“不在”)
【答案】在
【分析】本题考查反比例函数图像上点的坐标特征,根据反比例函数图像上点的坐标满足函数解析式求得k值,然后将点B坐标代入函数解析式中验证即可.
【详解】解:∵反比例函数y=kx的图像经过点A2,−4,
∴k=2×−4=−8,
∴反比例函数的解析式为y=−8x,
当x=12时,y=−812=−16,则点B在反比例函数的图像上,
故答案为:在.
知识点2:反比例函数的图象与性质
1、图象:由两条曲线组成(双曲线)
2、性质:
【题型3 由反比例函数解析式判断其性质】
【题型4 判断反比例函数图象】
【例4】(23-24八年级·湖南岳阳·期末)如图所示,该函数表达式可能是( )
A.y=3x2B.y=3xC.y=−3xD.y=3x
【答案】C
【分析】本题考查了反比例函数的图象.熟练掌握反比例函数的图象是解题的关键,由图象可知,反比例函数k<0,然后对各选项进行判断作答即可.
【详解】解:由图象可知,反比例函数k<0,
A中y=3x2不是反比例函数,故不符合要求;
B中y=3x是反比例函数,但不经过第二、第四象限,故不符合要求;
C中y=−3x是反比例函数,经过第二、第四象限,故符合要求;
D中y=3x不是反比例函数,故不符合要求;
故选:C.
【变式4-1】(23-24八年级·江苏泰州·期末)当菱形的面积一定时,它的两条对角线的长分别为x、y.选取5组数对x,y,在坐标系中进行描点,则正确的是( )
A.B.
C.D.
【答案】C
【分析】本题考查了反比例函数的图象,先利用菱形的面积公式求出y与x的函数解析式,再根据x的取值范围及函数的性质判断即可求解,掌握反比例函数的图象和性质是解题的关键.
【详解】解:设菱形的面积为k,则k=12xy,
∴y=2kx,
∴y是x的反比例函数,
∵x>0,2k>0,
∴图象分布在第一象限,y的值随x的增大而减小,
∴描点正确的是C,
故选:C.
【变式4-2】(23-24八年级·河南南阳·阶段练习)如图是三个反比例函数y1=k1x,y2=k2x,y3=k3x在y轴右侧的图象,则k1,k2,k3的大小关系为 .
【答案】k1>k2>k3/k3
【详解】由题意得:k3<0,k1>0,k2>0,
当x=1时,y1=k1,y2=k2,
∵y1>y2,
∴k1>k2,
∴k1>k2>k3,
故答案为:k1>k2>k3.
【变式4-3】(23-24·云南·模拟预测)定义新运算:p⊕q=pq,(q>0)−pq,(q<0)例如:3⊕5=35,3⊕(−5)=35,则y=2⊕x(x≠0)的图象是( )
A.B.
C.D.
【答案】D
【分析】本题考查了函数图象,根据新定义运算,写出函数解析式,再根据函数解析式即可判断求解,掌握反比例函数的图象是解题的关键.
【详解】解:由题意可得,y=2⊕x=2xx>0−2xx<0,
即y为反比例函数,当x>0时,图象在第一象限;当x<0时,图象在第二象限;
故选:D.
【题型5 由反比例函数图象的对称性求值】
【例5】(23-24八年级·全国·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,若正方形的边长是2,则图中阴影部分的面积等于 .
【答案】1
【分析】设反比例函数解析式y=kx,由题意可得:P点坐标为:(1,1),根据正方形与反比例函数中心对称的性质,即可求解.
【详解】解:设反比例函数解析式y=kx,
由题意可得:P点坐标为:(1,1),
故图中阴影部分的面积为:1×1=1.
故答案为:1.
【点睛】本题考查了反比例函数的性质,k的几何意义,中心对称的性质,熟练掌握反比例函数图象的性质是解题的关键.
【变式5-1】(23-24·辽宁鞍山·一模)如图,直线y=kxk>0与双曲线y=4x交于A,B两点,若A2,m,则点B的坐标为( )
A.2,2B.−2,−1C.−2,−2D.−1,−4
【答案】C
【分析】根据反比例函数的对称性进行求解即可.
【详解】解:∵直线y=kxk>0与双曲线y=4x交于A,B两点,
∴点A和点B关于原点对称,
把A2,m代入到y=4x中得:m=42=2,
∴A2,2,
∴B−2,−2,
故选C.
【点睛】本题主要考查了反比例函数的对称性,反比例函数与一次函数的交点问题,正确得到点A和点B关于原点对称是解题的关键.
【变式5-2】(23-24八年级·全国·专题练习)如图,点A3a,−a是反比例函数y=kx的图象与⊙O的一个交点,图中阴影部分的面积为4π,则反比例函数的解析式为 .
【答案】y=−43x
【分析】首先根据圆的对称性以及反比例函数的对称性可得:14πr2=4π,即可求得圆的半径,再根据两点间距离公式,可得a2=4,据此即可求解.
【详解】解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:14πr2=4π,
解得:r=4.
∵点A3a,−a是反比例函y=kx的图象与⊙O的一个交点.
∴−3a2=k且−3a2+−a2=r,
∴a2=4.
∴k=−3×4=−43,
则反比例函数的解析式是:y=−43x.
故答案为:y=−43x.
【点睛】本题考查了反比例函数图象的性质,勾股定理,求反比例函数的解析式,熟练掌握和运用反比例函数图象的性质是解决本题的关键.
【变式5-3】(23-24八年级·江苏无锡·期末)如图,过原点的直线交反比例函数y=ax图象于P、Q点,过点Р分别作x轴,y轴的垂线,交反比例函数y=bxx>0的图象于A、B点,已知b−a=3,则图中阴影部分的面积为 ;且当S△APB=3时,b的值为 .
【答案】 6 92
【分析】连接OA,OB,延长BP交x轴于点C,易求S△BOP=S△BOC-S△COP=12b-12a=32,
由P,Q关于与原点成中心对称,得OP=OQ,利用等底同高的三角形的面积相等可得S△BPO=S△BQO,易求S△BPQ=2S△BOP=3,同理可得:S△APQ=2S△AOP=3所以S阴影=6.设点C(m,0)m>0.则P(m,am),A(m,bm),B(bma,am),即可求得AP=3m,BP=3ma,利用三角形面积公式得到12AP·BP=12×3m×3ma=3,,解得a=1.5,进一步求得b=92.
【详解】
连接PQ,OA,OB,延长BP交x轴于点C,
设点C对应的数为m,m>0.则P(m,am),B(m,bm)
∴OC=m,PC=am,BC=bm
∴S△POC=12OC×PC=12a,S△BOC=12OC×BC=12b
∴S△BOP=S△BOC-S△COP=12b-12a=32
∵P、Q关于原点成中心对称,
∴OP=OQ
∴S△BPO=S△BQO
∴S△BPQ=2S△BOP=3
同理可得:S△APQ=2S△AOP=3
所以S阴影=S△POP+S△POA=3+3=6
设点C(m,0)m>0.
则P(m,am),A(m,bm),B(bma,am),
∴AP=bm−am=3m,BP=bma−m=b−ama=3ma,
∵S△APB=3,
∴12AP·BP=12×3m×3ma=3,
∴a=32,
∵b−a=3,∴b=92,
故答案为:6,92.
【点睛】本题主要考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标的特征,关于原点对称的点的坐标的性质,三角形的面积.利用点的坐标表示出相应线段的长度是解题的关键.
【题型6 由反比例函数的图象求比例系数】
【例6】(23-24八年级·浙江杭州·期末)在平面直角坐标系中,反比例函数 y=kxk≠0的图象如图所示,则k的值可能是( )
A.1B.2C.3D.4
【答案】C
【分析】本题考查了反比例函数的图象,解题的关键是掌握反比例函数图象离坐标轴越远,k的绝对值越大.
根据点A和点C的坐标,得出k的取值范围,即可解答.
【详解】解:∵该反比例函数位于第一象限的图象低于点A2,2,
∴k<2×2=4,
∵该反比例函数位于第三象限的图象低于点B−1,−2,
∴k>−1×−2=2,
∴2
故选:C.
【变式6-1】(23-24八年级·江苏扬州·期末)如图,反比例函数y=kx的图象经过平行四边形ABCD的顶点C,D,若点A、点B、点C的坐标分别为3,0,0,4,a,6,则k的值是 .
【答案】9
【分析】本题考查了反比例函数与几何综合,平行四边形的性质,反比例函数解析式等知识.熟练掌握反比例函数与几何综合,平行四边形的性质,反比例函数解析式是解题的关键.
设Dm,n,如图,连接AC、BD交于点E,则E3+a2,0+62,E0+m2,4+n2,即3+a2=0+m2,0+62=4+n2,可求m=3+a,n=2,则D3+a,2,由反比例函数y=kx的图象经过平行四边形ABCD的顶点Ca,6,D3+a,2,可得k=6a=23+a,计算求解即可.
【详解】解:设Dm,n,
如图,连接AC、BD交于点E,
∴E3+a2,0+62,E0+m2,4+n2,
∴3+a2=0+m2,0+62=4+n2,
解得,m=3+a,n=2,
∴D3+a,2,
∵反比例函数y=kx的图象经过平行四边形ABCD的顶点Ca,6,D3+a,2,
∴k=6a=23+a,
解得,a=32,k=9,
故答案为:9.
【变式6-2】(23-24八年级·江苏扬州·期末)如图,反比例函数y=kx的图象经过平行四边形ABCD的顶点C,D,若点A、点B、点C的坐标分别为3,0,0,4,a,6,则k的值是 .
【答案】9
【分析】本题考查了反比例函数与几何综合,平行四边形的性质,反比例函数解析式等知识.熟练掌握反比例函数与几何综合,平行四边形的性质,反比例函数解析式是解题的关键.
设Dm,n,如图,连接AC、BD交于点E,则E3+a2,0+62,E0+m2,4+n2,即3+a2=0+m2,0+62=4+n2,可求m=3+a,n=2,则D3+a,2,由反比例函数y=kx的图象经过平行四边形ABCD的顶点Ca,6,D3+a,2,可得k=6a=23+a,计算求解即可.
【详解】解:设Dm,n,
如图,连接AC、BD交于点E,
∴E3+a2,0+62,E0+m2,4+n2,
∴3+a2=0+m2,0+62=4+n2,
解得,m=3+a,n=2,
∴D3+a,2,
∵反比例函数y=kx的图象经过平行四边形ABCD的顶点Ca,6,D3+a,2,
∴k=6a=23+a,
解得,a=32,k=9,
故答案为:9.
【变式6-3】(23-24八年级·广西南宁·阶段练习)如图,点A的坐标是−2,0,点B的坐标是0,6,C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A'B'C'.若反比例函数y=kx的图像恰好经过A'B的中点D,则k= .
【答案】15
【分析】本题考查反比例函数图形上的点的坐标特征、坐标与图形的变化旋转等知识点,学会添加常用辅助线,构造全等三角形是解题的关键.
如图:作A'H⊥y轴于H,证明△AOB≌△BHA'AAS,推出OA=BH,OB=A'H,求出点A'6,4、D3,5坐标,最后代入即可解答.
【详解】解:作A'H⊥y轴于H.
∵∠AOB=∠A'HB=∠ABA'=90°,
∴∠ABO+∠A'BH=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠A'BH,
∵BA=BA',
∴△AOB≌△BHA'AAS,
∴OA=BH,OB=A'H,
∵点A的坐标是−2,0,点B的坐标是0,6,
∴OA=2,OB=6,
∴BH=OA=2,A'H=OB=6,
∴OH=4,
∴A'6,4,
∵BD=A'D,
∴D3,5,
∵反比例函数y=kx的图像经过点D,
∴k=15.
故答案为:15.
知识点3:反比例函数比例系数k的几何意义
如图,在反比例函数上任取一点,过这一点分别作轴,轴
的垂线,与坐标轴围成的矩形的面积
【题型7 由比例系数求图形的面积】
【例7】(23-24八年级·浙江台州·期末)如图,正六边形ABCDEF的顶点A在y轴上,边BC与x轴重合.反比例函数y=3x的图象经过正六边形的中心G,则正六边形ABCDEF的面积等于 .
【答案】9
【分析】此题主要考查了正多边形与反比例函数的应用,正确得出G点坐标是解题关键.设正六边形ABCDEF的边长为a,连接AG,BG,CG,过点G作GH⊥BC于点H,根据正六边形的性质得到GH=32a,进而得到点G的坐标为a,32a,将点G的坐标代入y=3x,得a2=23,根据S正六边形ABCDEF=6S△CGC即可求解.
【详解】解:设正六边形ABCDEF的边长为a.
如图,连接AG,BG,CG,过点G作GH⊥BC于点H,
则AG=BG=CG=BC=a,BH=12BC=a2,
∴GH=32a,
∴点G的坐标为a,32a.
∵y=3x的图象经过点G,
∴将点G的坐标代入,得32a=3a,
解得a2=23,
∴S正六边形ABCDEF=6S△CGC=6×12×a×32a=323a2=9.
【变式7-1】(23-24八年级·广东揭阳·期末)如图,A、B是反比例函数y=6x图象上两点,AC和BD都与坐标轴垂直,垂足分别为C,D,OD=1,OC=2,AC与BD交于点P,则△AOB的面积为( )
A.4B.6C.8D.10
【答案】C
【分析】本题考查了反比例函数的k的几何意义、反比例函数的性质,求出B6,1,A2,3,得到AC=3,BE=1,CE=4,由A、B是反比例函数y=6x图象上两点得到S△AOC=S△BOE,再根据S△AOB=S△AOC+S梯形ABEC−S△BOE=S梯形ABEC,进行计算即可得出答案,熟练掌握反比例函数的k的几何意义与反比例函数的性质是解此题的关键.
【详解】解:如图,连接OA、OB,作BE⊥x轴于E,
,
∵OD=1,OC=2,A、B是反比例函数y=6x图象上两点,
∴B61,1,A2,62,即B6,1,A2,3,
∴AC=3,BE=1,CE=4,
∵ A、B是反比例函数y=6x图象上两点,
∴S△AOC=S△BOE=12×6=3,
∴S△AOB=S△AOC+S梯形ABEC−S△BOE=S梯形ABEC=12BE+AC⋅CE=12×4×4=8,
故选:D.
【变式7-2】(23-24八年级·湖南邵阳·期末)如图,直线y=−x与反比例函数y=−6x的图象相交于A、B两点,过A、B两点分别作y轴的垂线,垂足分别为点C、D,连接AD,BC,则四边形ACBD的面积为( )
A.4B.8C.12D.24
【答案】C
【分析】首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12∣k∣,得出S△AOC=S△ODB=12∣k∣=3,再根据反比例函数的对称性可知OC=OD,AC=BD,即可求出四边形ACBD的面积.
【详解】解:∵过A,B两点分别作y轴的垂线,垂足分别为点C,D,
∴S△AOC=S△ODB=12∣k∣=3,
又∵OC=OD,AC=BD,
∴S△AOC=S△ODA=S△ODB=S△OBC=3,
∴四边形ACBD的面积为:S△AOC+S△ODA+S△ODB+S△OBC=4×3=12.
故选:C.
【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为k;图象上的点与原点所连的线段、 坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12∣k∣,是经常考查的一个知识点;同时考查了反比例函数图象的对称性.
【变式7-3】(23-24八年级·浙江宁波·期末)如图, △OAC 和 △BAD 都是等腰直角三角形, ∠ACO=∠ADB=90∘ ,反比例函数 y=4x 在第一象限的图象经过点 B ,则 △OAC 与 △BAD 的面积之差为 .
【答案】2
【分析】本题考查了反比例函数系数k的几何意义,等腰三角形的性质,面积公式,平方差公式,根据△OAC和△BAD都是等腰直角三角形可得出OC=AC、AD=BD,设OC=a,BD=b,则点B的坐标为a+b,a−b,根据反比例函数图象上点的坐标特征即可求出a2−b2=4,再根据三角形的面积即可得出△OAC与△BAD的面积之差,熟练掌握知识点的应用是解题的关键.
【详解】∵△OAC和△BAD都是等腰直角三角形,
∴OC=AC,AD=BD,
设OC=a,BD=b,
则点B的坐标为a+b,a−b,
∵反比例函数y=4x在第一象限的图象经过点B,
∴a+ba−b=a2−b2=4,
∴S△OAC−S△BAD=12a2−12b2=12×4=2,
故答案为:2.
【题型8 由图形的面积求比例系数】
【例8】(23-24八年级·浙江宁波·期末)如图,点D是▱ABCD内一点,CD//x轴,BD//y轴,BD=2,∠ADB=135°,S△ABD=2,若反比例函数y=kx(x<0)的图像经过A、D两点,则k的值是 .
【答案】−6
【分析】根据三角形面积公式求得AE=22,易证得△AOM≌△CBDAAS,得出MO=BD=2,根据题意得出△ADE是等腰直角三角形,得出DE=AE=22,设A(m,2),则有D(m+22,32)根据反比例函数的定义得出关于m的方程,解方程求得m=−32,即可求得k=−6.
【详解】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,
∵四边形OABC是平行四边形,
∴OA//BC,OA=BC,
∴∠AOM=∠CNM,
∵BD//y轴,
∴∠CBD=∠CNM,
∴∠AOM=∠CBD,
∵CD与x轴平行,BD与y轴平行,
∴∠CDB=90°,BE⊥AM,
∴∠CDB=∠AMO,
∴△AOM≌△CBD(AAS),
∴OM=BD=2,
∵S△ABD=12BD⋅AE=2,
∴AE=22,
∵∠ADB=135°,
∴∠ADE=45°,
∴△ADE是等腰直角三角形,
∴DE=AE=22,
∴D的纵坐标为32,
设A(m,2),则,D(22−m,32)
∵反比例函数y=kx(x<0)的图像经过A、D两点,
k=2m=(m+22)×32,
解得:m=−32,
∴k=2m=−6.
故答案为:−6.
【点睛】本题考查了反比例函数图像上点的坐标特征,平行四边形的性质,等腰直角三角形的判定和性质,三角形的面积等,表示出A、D的坐标是解题的关键.
【变式8-1】(23-24八年级·山东威海·期末)如图所示,在平面直角坐标系中,四边形OABC为矩形,点A、C分别在x轴、y轴上,点B在函数y1=−8x的图象上,边AB与函数y2=kx的图象交于点D,已知阴影部分ODBC的面积为6,则k=( ).
A.2B.−4C.4D.−2
【答案】B
【分析】本题考查了反比例函数k的几何意义,根据反比例函数k的几何意义分别求出矩形AOCB和△AOD的面积,根据阴影部分的面积为6,可得关于k的一元一次方程,解方程后结合反比例函数的性质即可求解,掌握是解题的关键.
【详解】解:∵点B在函数y1=−8x的图象上,
∴S矩形AOCB=−8=8,
∵点D在函数y2=kx的图象上,
∴S△AOD=12k,
∵阴影部分ODBC的面积为6,
∴8−12k=6,
∴k=4,
∴k=±4,
∵函数y2=kx的图象位于第二象限,
∴k<0,
∴k=−4,
故选:B.
【变式8-2】(23-24八年级·辽宁·阶段练习)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴,y轴上,对角线BD∥x轴,反比例函数y=kxk>0,x>0的图象经过矩形对角线的交点E,若点A1,0,D0,2,则k的值为 .
【答案】5
【分析】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,2).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E12x,2.由勾股定理得出AD2+AB2=BD2,列出方程12+22+(x−1)2+22=x2,求出x,得到E点坐标,利用待定系数法求出k.
【详解】解:∵ BD∥x轴,D(0,2),
∴B、D两点纵坐标相同,都为2,
∴可设B(x,2).
∵矩形ABCD的对角线的交点为E,
∴E为BD中点,∠DAB=90°.
∴E12x,2.
∵∠DAB=90°,
∴AD2+AB2=BD2,
∵A(1,0),D(0,2),B(x,4),
∴12+22+(x−1)2+22=x2,
解得x=5,
∴E52,2.
∵反比例函数y=kx(k>0,x>0)的图象经过点E,
∴k=52×2=5.
故答案为:5.
【变式8-3】(23-24八年级·浙江金华·期末)如图,在平面直角坐标系中,四边形ABCD是菱形,BC∥x轴.AD与y轴交于点E,反比例函数 y=kx(x>0)的图象经过顶点 C、D.已知点C的横坐标为5,BE=2DE,则k的值为 .
【答案】403/1313
【分析】由已知可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.
【详解】解:过点D作DF⊥BC于F,
由已知,BC=5,
∵四边形ABCD是菱形,
∴DC=5,
∵BE=2DE,
∴设DE=x,则BE=2x,
∴DF=2x,BF=x,FC=5﹣x,
在Rt△DFC中,
DF2+FC2=DC2,
∴(2x)2+(5﹣x)2=52,
解得x1=2,x2=0(舍去),
∴DE=2,FD=4,
设OB=a,
则点D坐标为(2,a+4),点C坐标为(5,a),
∵点D、C在双曲线上,
∴k=2×(a+4)=5a,
∴a=83,
∴k=5×83=403,
故答案为:403.
【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
【题型9 反比例函数图象中的规律探究】
【例9】(23-24·河北张家口·二模)如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y=kx(x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律,作出矩形B18A17A18P19时,落在反比例函数图象上的顶点P19的坐标为( )
A.(218,1218)B.(1218,218)C.(215,1215)D.(1215,215)
【答案】A
【分析】先根据题意得出P1点的坐标,进而可得出反比例函数的解析式,再依次求出点P2,P3的坐标,找出规律即可得出结论.
【详解】解:∵正方形OAP1B的边长为1,点P1在反比例函数y=kx(x>0)的图象上,
∴P1(1,1),
∴k=1,
∴在反比例函数的解析式为:y=1x,
∵B1是P1A的中点,
∴P2A1=AB1=12,
∴OA1=2,
∴P2(2,12),
同理,P3(22,122),
…
∴Pn(2n-1,12n−1).
当n=19时,则有
P19的坐标为:(218,1218)
故选:A.
【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,找出规律是解题的关键.
【变式9-1】(23-24·湖北武汉·模拟预测)某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变,在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如下表:(动力×动力臂=阻力×阻力臂)
请根据表中数据规律探求,当动力臂L长度为2.0m时,所需动力最接近的是( )
A.300NB.180NC.150ND.120N
【答案】C
【分析】本题考查了反比例函数的应用,由表格可知动力臂与动力成反比的关系,设L=KF,将0.5,600代入L=KF得出L=300F,再令L=2,计算即可得解,解题的关键是从表格中得出动力臂与动力成反比的关系.
【详解】解:由表格可知动力臂与动力成反比的关系,
设L=KF,
将0.5,600代入L=KF得:600=K0.5,
解得:K=300,
∴L=300F,
把L=2代入得:2=300F,
解得:F=150,
故选:C.
【变式9-2】(23-24·辽宁·一模)如图,点B11,33在直线l2:y=33x上,过点B1作A1B1⊥l1交直线l:y=3x于点A1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,过C1的反比例函数为y=k1x;再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,过C2的反比例函数为y=k2x,…,按此规律进行下去,则第n个反比例函数的kn= .(用含n的代数式表示)
【答案】233×94n−1或233×322n−2
【详解】解:直线l2:y=33x 与x轴夹角为30°,
直线l1:y=3x与x轴夹角为60°,
∴l1 与l2的夹角30°,
∵A1B1⊥l1,
∴∠OB1A1=60°,
∵等边三角形A1B1C1,
∴B1C1⊥x轴,
∵B1(1,33),
∴OB1=233,
∴B1C1=33,
∴C1(1,233),
∴k1=233,
∴OB2=233+32=3,
∴A2B2=32,
∴B2的横坐标32,
B2的纵坐标32,
∴C2(32,3),
∴k2=332,
以此得到OBn=(32)n−1×233, Cn的横坐标(32)n−1,
Cn的纵坐标(32)n−1×233,
∴kn=(32)n−1×(32)n−1×233=233×(32)2n−2,
故答案为 233×(32)2n−2.
【点睛】本题考查一次函数与反比例函数图象及性质,平面内点的坐标特点;能够通过直角三角形中30°的特点,求出边的关系是解题的关键.
【变式9-3】(23-24八年级·湖南·阶段练习)如图,在反比例函数y=4x的图象上有A2,m、B两点,连接AB,过这两点分别作x轴的垂线交x轴于点C、D,已知BD=12AC,点F1是CD的中点,连接AF1、BF1,得到△AF1B;点F2是DF1的中点,连接AF2、BF2,得到△AF2B;……按照此规律继续进行下去,则△AFnB的面积为 .(用含正整数n的式子表示)
【答案】2n+12n
【分析】本题主要考查了反比例函数与几何综合,图形类的规律探索,先求出A2,2,得到AC=2,OC=2,BD=1,进而求出B4,1,得到OD=4,则CD=2,根据梯形面积公式求出S四边形ACDB=3,再分别求出S△ACF1=1,S△BDF1=12 S△ACF2=32,S△BDF2=14,S△ACF3=74,S△BDF3=18,进而得到规律S△ACFn=2n−12n−1,S△DCFn=12n,则S△AFnB=S四边形ACDB−S△ACFn−S△BDFn=2n+12n.
【详解】解:∵A2,m在反比例函数y=4x的图象上,
∴m=42=2,
∴A2,2,
∵AC⊥x轴,
∴AC=2,OC=2
∴BD=12AC=1,
∵BD⊥x轴,
∴点B的纵坐标为1,
在y=4x中,当y=4x=1时,x=4,
∴B4,1,
∴OD=4,
∴CD=2,
∴S四边形ACDB=AC+BD2⋅CD=3,
∵点F1是CD的中点,
∴CF1=DF1=12CD=1,
∴S△ACF1=12AC⋅CF1=12×1×2=1,S△BDF1=12BD⋅DF1=12×1×1=12,
∵点F2是DF1的中点,
∴DF2=12DF1=14CD=12,
∴CF2=CD−DF2=34CD=32,
∴S△ACF2=12AC⋅CF2=32,S△BDF2=12BD⋅DF2=14,
∵F3为CF2的中点,
∴DF3=12DF2=18CD=14,
∴CF3=CD−DF3=74,
∴S△ACF3=12AC⋅CF3=74,S△BDF3=12BD⋅DF3=18,
……,
以此类推可知,S△ACFn=2n−12n−1,S△DCFn=12n,
∴S△AFnB=S四边形ACDB−S△ACFn−S△BDFn=3−2n−12n−1−12n=3⋅2n−2⋅2n+2−12n=2n+12n,
故答案为:2n+12n.
【题型10 反比例函数图象中的存在性问题】
【例10】(23-24八年级·河南周口·期末)如图,四边形OABC是面积为4的正方形,函数y=kx(x>0)的图象经过点B.
(1)k的值为______.
(2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC',正方形NA'BC.设线段MC',NA'分别与函数y=kx(x>0)的图象交于点E,F,连接OE,OF,EF.
①求△OEF的面积;
②在x轴上是否存在点P,使△PEF为直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)4
(2)①S△OEF=152;②存在,点P的坐标为(3,0)或(−3,0)
【分析】(1)根据坐标与图形、正方形的性质得到点B坐标,然后代入y=kx(x>0)求解即可;
(2)①根据轴对称性质和反比例函数图象上点的坐标特征求得点E、F的坐标,再根据反比例函数比例系数k的几何意义得到S△FOH=S△EOM,则有S△OEF=S梯形FHME,进而求解即可;
②设Px,0,分三种情况:若∠PEF=90°、若∠EPF=90°、若∠PFE=90°,利用两点坐标距离公式和勾股定理列方程,然后解方程即可求解.
【详解】(1)解:∵四边形OABC是面积为4的正方形,
∴OA=AB=4,则B2,2,
将B2,2代入y=kx(x>0)中,得k=2×2=4;
(2)解:①根据翻折性质,得ON=OM=4,
∴点E的横坐标为4,点F的纵坐标为4,
∵点E、F在函数y=kx(x>0)的图象上,
∴当x=4时,y=1,当y=4,x=1,
∴E4,1,F1,4,
过F作FH⊥x轴于H,则S△FOH=S△EOM,
∴S△OEF=S梯形FHME=12×4+1×4−1=152;
②存在.设Px,0,
∴PE2=x−42+0−12=x2−8x+17,
PF2=x−12+0−42=x2−2x+17,
EF2=4−12+1−42=18,
∵△PEF为直角三角形,
∴分三种情况:
若∠PEF=90°,则PE2+EF2=PF2,
∴x2−8x+17+18=x2−2x+17,解得x=3,
∴P3,0;
若∠EPF=90°,则PE2+PF2=EF2,
∴x2−8x+17+x2−2x+17=18,即x2−5x+8=0,
∵x−522=−74<0,
∴该方程无解,即P不存在;
若∠PFE=90°,则EF2+PF2=PE2,
∴18+x2−2x+17=x2−8x+17,解得x=−3,
∴P−3,0,
综上,满足条件的点P的坐标为(3,0)或(−3,0).
【点睛】本题考查反比例函数与几何的综合,涉及待定系数法求函数解析式、反比例函数比例系数k的几何意义、坐标与图形、正方形的性质、轴对称的性质、勾股定理、解方程等知识,熟练掌握相关知识的联系与运用是解答的关键.
【变式10-1】(23-24八年级·浙江·专题练习)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于A,BC⊥y轴于C,BA=3,BC=5,有一反比例函数图象刚好过点B.
(1)分别求出过点B的反比例函数和过A,C两点的一次函数的表达式.
(2)动点P在射线CA(不包括C点)上,过点P作直线l⊥x轴,交反比例函数图象于点D.是否存在这样的点Q,使得以点B,D,P,Q为顶点的四边形为菱形?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=15x,y=−35x+3
(2)5,−274或(5,−2728)或(55−10,3)
【分析】本题主要考查反比例函数的综合题,熟练掌握待定系数法求解析式,一次函数的性质,反比例函数的性质,菱形的性质等知识是解题的关键.
(1)根据题意分别求出A点,B点和C点的坐标,然后用待定系数法求出函数解析式即可;
(2)根据函数解析式设出P点和D点的坐标,若以点B,D,P,Q为顶点的四边形为菱形则点Q在直线BA上,且PD=DB=BQ,据此等量关系列方程求解即可.
【详解】(1)解:由题意知,A(5,0),B(5,3),C(0,3),
设过点B的反比例函数解析式为y=kx,
代入B点坐标得,3=k5,
解得k=15,
∴过点B的反比例函数的解析式为y=15x,
设直线AC的解析式为y=kx+b,
代入A点和C点坐标得,5k+b=0b=3,
解得k=−35b=3,
∴过A,C两点的一次函数的表达式为y=−35x+3;
(2)存在,
设Pm,−35m+3,则Dm,15m,
①若以点B,D,P,Q为顶点的四边形为菱形,则点Q在直线BA上,且PD=DB=BQ,
∴ 15m−−35m+3=m−52+3−15m2,
整理得1625m2−325m+7=0,
解得m=54或354,
当m=54时,PD=15m−−35m+3=394=BQ,
∴此时Q5,3−394,
即Q5,−274;
当m=354时,PD=15m−−35m+3=11128=BQ,
∴Q此时5,3−11128,
即Q5,−2728;
②若以点B,D,P,Q为顶点的四边形为菱形,则点Q在直线BC上,且PD与BQ互相垂直平分,
则Q点的纵坐标为3,且−35m+3+15m2=3,
解得m=−5±552,
∵m>0,
∴m=55−52,
∴Q(55−10,3),
综上所述,若以点B,D,P,Q为顶点的四边形为菱形,则Q点的坐标为5,−274或(5,−2728)或(55−10,3).
【变式10-2】(23-24·四川成都·一模)如图,在平面直角坐标系xOy中,一次函数y=x+2与反比例函数y=kx的图像交于A、B两点,其中点A的坐标为1,m.
(1)求反比例函数y=kx的函数表达式和点B的坐标.
(2)若A'是A点关于原点的对称点,连接AA',BA',求△A'AB的面积.
(3)连接OA,将线段OA绕点O顺时针旋转45°交反比例函数y=kx的图像于点C,D是x轴上一点,是否存在这样的点D,使得以O、C、D为顶点,OC为腰的等腰三角形?若存在,请写点D的坐标;若不存在,请说明理由.
【答案】(1)y=3x,B−3,−1.
(2)8
(3)D1−302,0,D2302,0,D326,0
【分析】(1)将1,m代入y=x+2可求出m值,再利用待定系数法求出反比例函数解析式即可;
(2)先求出直线与x轴的交点E的坐标,再依据S△A'AB=2S△AOB=2S△AOE+S△BOE并代入数据计算即可;
(3)如图:先根据勾股定理可得OA=12+32=10,如图:过A作AE⊥OA1,过C作CD⊥x轴,则∠OAE=∠AOA1=45°,进而得到OE=AE,再结合勾股定理可得AE=OE=5,即EA1=10−5,则AA12=10−52+52;设A1的坐标为c,d,可列出方程组c−12+d−32=10−52+52c2+d2=10可得c=22d=2,进而得出直线OC解析式为y=12x,再与双曲线联立求得点C的坐标,求得OC=302,最后根据等腰三角形性质确定符合题意的点D坐标即可.
【详解】(1)解:∵点1,m在一次函数y=x+2的图像上,
∴m=1+2=3,
∴A1,3,
∴反比例函数解析式为y=3x
联立方程组得:y=x+2y=3x,解得y=1y=3或y=−3y=−1.
∴B−3,−1.
(2)解:如图1,连接BO,延长AO交反比例函数图像于点A',直线AB交x轴于点E,
∵A'是A点关于原点的对称点,
∴A'−1,−3,
在直线y=x+2中,当y=0时,x=−2,
∴E−2,0,即OC=2,
∴S△AOB=S△AOE+S△BOE=12×2×3+12×2×1=4,
根据反比例函数的图像关于原点成中心对称图形,
∴OA=OA',
∴S△A'AB=2S△AOB=2×4=8.
(3)解:如图:存在这样的点D,点D位置有三处:
∵A1,3,
∴OA=12+32=10,
如图:过A作AE⊥OA1,过C作CD⊥x轴,
∵线段OA绕点O顺时针旋转45°得到OA1,
∴∠AOA1=45°,OA=OA1=10,
∴∠OAE=∠AOA1=45°,
∴OE=AE,
∵OA2=OE2+AE2,
∴10=2AE2,解得:AE=OE=5,
∴EA1=OA1−OE=10−5
∴AA12=EA12+AE2=10−52+52,
设A1的坐标为c,d,
∴AA12=c−12+d−32=10−52+52①,
∵OA1=10,
∴c2+d2=10②,
联立c−12+d−32=10−52+52c2+d2=10,解得:c=22d=2(舍弃负值),
∴A122,2,
∴直线OA1解析式为y=12x,
∵直线OA1与反比例函数图像交于点C,
∴直线OC解析式为y=12x,
∴y=12xy=3x,解得:x=6y=62或x=−6y=−62(不合题意舍弃),
∴C6,62,
∴OC=6+32=302,
如图:当△OCD1为等腰三角形,则OD1=OC=302,即D1−302,0;
当△OCD2为等腰三角形,则OD2=OC=302,即D2302,0;
当△OCD3为等腰三角形,过C作CD⊥x轴,则OD=6,
∵OC=CD3,
∴OD3=2OD=26,即D326,0;
∴D1−302,0,D2302,0,D326,0.
【点睛】本题考查了求反比例函数解析式,反比例函数与一次函数综合应用、正切的性质、等腰三角形的性质、坐标与图形、勾股定理等知识点,熟练掌握反比例函数与几何图形的综合应用是解答本题的关键.
【变式10-3】(23-24八年级·浙江温州·阶段练习)如图1,在平面直角坐标系中,在平面直角坐标系中,反比例函数y=kx(k>0,k为常数,x>0)的图象经过矩形OABC的顶点B4,2,顶点A,C分别在x轴,y轴的正半轴上,点D为线段AC上的一个动点,点E在直线AO上一点,点F在反比例图象上.
(1)求反比例函数表达式.
(2)如图1,若点D为对角线AC的中点时,且四边形BDEF是平行四边形,求DE长.
(3)在坐标平面内,是否存在P点,使得四边形BDPF为正方形,若存在,请求出点F的坐标,若不存在,请说明理由.
【答案】(1)y=8x
(2)DE=17
(3)存在,F141+52,41−5,F217+12,17−1
【分析】本题考查了反比例函数与几何综合,求反比例函数解析式,正方形的性质与平行四边形的性质;
(1)把B4,2代入y=kx,即可求解;
(2)设Em,0,Fn,8n,根据D2,1,B4,2,BE为对角线,利用中点坐标公式,即可求解;
(3)根据矩形的性质可得A4,0,C0,2,得出直线AC的解析式为y=−12x+2,分两种情况讨论,当F在B点右侧时,当F在B点左侧时,设Dx,−12x+2,根据正方形的性质,全等三角形的性质,得出F的坐标,进而代入解析式即可求解.
【详解】(1)解:∵B4,2在y=kx的图象上,
∴k=4×2=8,
∴y=8x
(2)解:∵矩形OABC的顶点B4,2,点D为对角线AC的中点时,
∴D为OB的中点,则D2,1,
∵点E在直线AO上一点,点F在反比例图象上,四边形BDEF是平行四边形,
∴DE=BF,
设Em,0,Fn,8n
∵D2,1,B4,2,BE为对角线
∴m+4=2+n2=8n+1
解得:m=6n=8
∴E6,0
∴DE=2−62+12=17
(3)解:∵矩形OABC的顶点B4,2,
∴A4,0,C0,2
直线AC的解析式为y=kx+bk≠0,
将A4,0,C0,2代入得
4k+b=0b=2
解得:k=−12b=2
∴直线AC的解析式为y=−12x+2,
如图所示,当F在B点右侧时,过点D作DG⊥BC,于点G,过点F作FM⊥BC于点M,
∴∠DGB=∠BMF=90°
∵四边形BDPF为正方形,
∴BD=BF,∠DBF=90°,
∴∠GBD=90°−∠FBM=∠BFM,
∴△BDG≌△FBM
∴DG=BM
∵点D为线段AC上的一个动点,
设Dx,−12x+2 0
∴F4+12x,x−2
∵F在y=8x上,
∴4+12xx−2=8
解得:x=41−3
∴F141+52,41−5
如图所示,当F在B点左侧时,
同理可得△BFN≌△DBH,
∴FN=BH,BH=FN
设Dx,−12x+2,0
∴F4−12x,6−x
∵F在y=8x上,
∴4−12x6−x=8
解得:x=7+17(舍去)或x=7−17
∴F217+12,17−1
综上所述,F141+52,41−5,F217+12,17−1x
−2
2
4
y
3
−3
▲
函数
图象
所在象限
增减性
三象限
在同一象限内,随的增大而减小
四象限
在同一象限内,随的增大而增大
越大,函数图象越远离坐标原点
动力臂(L/m)
…
0.5
1.0
1.5
2.0
2.5
…
动力(F/N)
…
600
302
200
a
120
…
初中数学沪科版(2024)九年级上册22.4 图形的位似变换课时练习: 这是一份初中数学沪科版(2024)九年级上册<a href="/sx/tb_c44096_t7/?tag_id=28" target="_blank">22.4 图形的位似变换课时练习</a>,共51页。
沪科版(2024)九年级上册22.3 相似三角形的性质练习题: 这是一份沪科版(2024)九年级上册<a href="/sx/tb_c44094_t7/?tag_id=28" target="_blank">22.3 相似三角形的性质练习题</a>,共73页。
初中数学沪科版(2024)九年级上册22.1 比例线段巩固练习: 这是一份初中数学沪科版(2024)九年级上册<a href="/sx/tb_c44092_t7/?tag_id=28" target="_blank">22.1 比例线段巩固练习</a>,共36页。