![2024-2025学年江苏省苏州工业园区第十中学九上数学开学经典模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16185025/0-1727079625326/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年江苏省苏州工业园区第十中学九上数学开学经典模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16185025/0-1727079625399/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年江苏省苏州工业园区第十中学九上数学开学经典模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16185025/0-1727079625426/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年江苏省苏州工业园区第十中学九上数学开学经典模拟试题【含答案】
展开
这是一份2024-2025学年江苏省苏州工业园区第十中学九上数学开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)抛物线y=-3x2-4的开口方向和顶点坐标分别是( )
A.向下,(0,4)B.向下,(0,-4)
C.向上,(0,4)D.向上,(0,-4)
2、(4分)一个直角三角形的两边长分别为,则第三边长可能是( )
A.B.C.或2D.
3、(4分)下列电视台的台标,是中心对称图形的是( )
A.B.C.D.
4、(4分)在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
这些运动员跳高成绩的中位数和众数分别是( )
A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4
5、(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,已知BC=10,则DE的长为( )
A.3 B.4 C.5 D.6
6、(4分)在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是( )
A.B.
C.D.与互相平分
7、(4分)学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?
甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;
乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;
丙同学说:判定四边形的对角线相等,并且互相垂直平分;
丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.
上述四名同学的说法中,正确的是()
A.甲、乙B.甲、丙C.乙、丙、丁D.甲、乙、丙、丁
8、(4分)如图,点P(-3,3)向右平移m个单位长度后落在直线y=2x-1上,则m的值为( )
A.7B.6C.5D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是_____.
10、(4分)计算:=____.
11、(4分)如图,中,,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是 cm.
12、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
【详解】
在反比例函数y=中,k=1>0,
∴该函数在x<0内y随x的增大而减小.
∵x1<x1<0,
∴y1>y1.
故答案为:>.
本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
13、
【解析】
根据等边对等角和三角形的内角和定即可求出∠ABC,然后根据垂直平分线的性质可得DA=DB,再根据等边对等角可得∠DBA=∠A,即可求出∠DBC.
【详解】
解:∵,,
∴∠ABC=∠ACB=(180°-∠A)=75°
∵的垂直平分线交于点,
∴DA=DB
∴∠DBA=∠A=30°
∴∠DBC=∠ABC-∠DBA=45°
故答案为:45°
此题考查的是等腰三角形的性质和垂直平分线的性质,掌握等边对等角和垂直平分线的性质是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
先计算出a+b,b-a以及ab的值,再把所求代数式变形为,然后代值计算即可.
【详解】
解:∵,
∴,
∴原式=.
本题二次根式的化简求值,通过先计算a+b,b-a以及ab的值,变形所求代数式,从而使计算变得简便.
15、(1);(2)S=();(3)PQ不能平分△ABC的周长,理由见解析.
【解析】
(1)由题意得, PB=6-t,BQ=2t,根据PQ∥AC,得到,代入相应的代数式计算求出t的值;
(2)由题意得, PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=BP×BQ,列出表达式即可;
(3)由题意根据勾股定理求得AC=10cm,利用PB+BQ是△ABC周长的一半建立方程解答即可.
【详解】
解:(1)由题意得,BP=6-t,BQ=2t,
∵PQ∥AC,
∴,即,
解得t=,
∴当t=时,PQ∥AC;
(2)由题意得, PB=6-t,BQ=2t,
∵∠B=90°,
∴ BP×BQ=×2t×(6-t)= ,
即ts秒时,S=();
(3)PQ不能平分△ABC的周长.
理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
∴AC==10cm,
设ts后直线PQ将△ABC周长分成相等的两部分,则AP=tcm,BQ=2tcm,BP=(6-t)cm,由题意得
2t+6-t=×(6+8+10)
解得:t=6>4,
所以不存在直线PQ将△ABC周长分成相等的两部分,
即PQ不能平分△ABC的周长.
本题考查勾股定理的应用、相似三角形的性质和三角形的面积,灵活运用相似三角形的性质,结合图形求解是解题的关键.
16、(1) ;(2)①②预估利润的最大值是17500元,此时购进A型手机34部,B型手机18部,C型手机8部.
【解析】
(1)关键描述语:A型、B型、C型三款手机共60部,由A、B型手机的部数可表示出C型的手机的部数.根据购机款列出等式可表示出x、y之间的关系.根据题干,求出x的取值范围.
(2)①由预估利润W=预售总额﹣购机款﹣各种费用,列出等式即可.
②利用一次函数的增减性,结合(1)中求得的x的取值范围,即可确定最大利润和各种手机的购买数量.
【详解】
解:(1)C手机的部数为;因为购进手机总共用了61000原,所以
整理得,
根据题意 得:
解得:
故与之间的函数关系式为:
(2)①根据题意可知:
整理得,
将(1)中代入以上关系式中,得
整理得,
②根据可知:W是关于x的一次函数,且W随x的增大而增大
∴当x=34时,W取最大值,
将x=34分别代入,中,整理得:
,
即预估利润的最大值是17500元,此时购进A型手机34部,B型手机18部,C型手机8部.
本题考查了一次函数的应用,考点涉及列一次函数关系式、不等式、以及函数增减性问题,难度较大,熟练掌握一次函数相关知识点以及销售问题的基本概念是解题的关键.
17、证明见解析.
【解析】
根据平行四边形的性质可得:AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,即可证明AE=DF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
同理可得:DF=CD,
∴AE=DF,
即AF+EF=DE+EF,
∴AF=DE.
本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定等知识点的应用,能综合运用性质进行推理是解此题的关键,题目比较典型,难度适中.
18、(1)详见解析;(2)6.8;(3)答案不唯一,如:两组都支持,理由是:甲乙两组平均数一样.
【解析】
(1)根据题意可把数据整理成统计表;
(2)根据平均数和中位数的性质进行计算即可.
(3)根据比较平均数的大小,即可解答.
【详解】
(1)答案不唯一,如统计表
(2)甲组平均数: =6.8
乙组的中位数为:7.
(3)两组都支持,理由是:甲乙两组平均数一样.
此题考查统计表,平均数,中位数,解题关键在于看懂图中数据.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
试题解析:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,
∴CD2=AD•BD=8×2,
则CD=1.
20、1
【解析】
根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n-m可得答案.
【详解】
解:由题意知,m+1=n且m+n=19,
∴m=9,n=10,
∴x=19×10-9=1,
故答案为:1.
本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.
21、.
【解析】
试题分析:原式=.故答案为.
考点:因式分解-运用公式法.
22、,,1
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.
【详解】
解:;
由①得:;
由②得:;
不等式组的解集为:;
所以不等式组的整数解为,,1,
故答案为:,,1.
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
23、第三象限
【解析】分析:
根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.
详解:
∵直线y=kx+b经过第一、三、四象限,
∴k>0,b
相关试卷
这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省苏州工业园区星湖学校数学九上开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省江阴初级中学九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。