2024-2025学年江苏省苏州吴江市青云中学九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开
这是一份2024-2025学年江苏省苏州吴江市青云中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点( )
A.(﹣1,1)B.(﹣4,1)C.(﹣2,﹣1)D.(1,﹣2)
2、(4分)的算术平方根是( )
A.B.C.D.
3、(4分)已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则的值为( )
A.2B.-1
C.-D.-2
4、(4分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为( )
A.7B.8C.6或8D.7或8
5、(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是( )
A.12B.24C.40D.48
6、(4分)以下四个命题正确的是
A.平行四边形的四条边相等
B.矩形的对角线相等且互相垂直平分
C.菱形的对角线相等
D.一组对边平行且相等的四边形是平行四边形
7、(4分)下列交通标志是轴对称图形的是( )
A.B.C.D.
8、(4分)年一季度,华为某销公营收入比年同期增长,年第一季度营收入比年同期增长,年和年第一季度营收入的平均增长率为,则可列方程( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)①_________;②_________;③_________.
10、(4分)一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______
11、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
12、(4分)若关于x的一元一次不等式组的的解集为,则a的取值范围是___________.
13、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.
(1)求证:矩形DEFG是正方形;
(2)求AG+AE的值;
(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.
15、(8分)先化简,再求值:,其中- 1.
16、(8分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.
17、(10分)如图,在中,AD是高,E、F分别是AB、AC的中点.
(1)求证:EF垂直平分AD;
(2)若四边形AEDF的周长为24,,求AB的长.
18、(10分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.
(1)求证:△BFO≌△DEO;
(2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;
(3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
20、(4分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为 .
21、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;
22、(4分)如图,AB∥CD,E、F分别是AC、BD的中点,若AB=5,CD=3,则EF的长为______________.
23、(4分)直线沿轴平移3个单位,则平移后直线与轴的交点坐标为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:在平面直角坐标系中有两条直线y=﹣1x+3和y=3x﹣1.
(1)确定这两条直线交点所在的象限,并说明理由;
(1)求两直线与坐标轴正半轴围成的四边形的面积.
25、(10分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.
26、(12分)一辆汽车和一辆摩托车分别从,两地去同一城市,它们离地的路程随时间变化的图象如图所示,根据图象中的信息解答以下问题:
(1),两地相距______;
(2)分别求出摩托车和汽车的行驶速度;
(3)若两图象的交点为,求点的坐标,并指出点的实际意义.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“帅”位于点(-2,-2),“马”位于点(1,-2),可知原点位置,然后可得“兵”的坐标.
【详解】
解:如图
∵“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),
∴原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O,
∴“兵”位于点(﹣4,1).
故选:B.
本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.
2、B
【解析】
根据算术平方根的概念求解即可.
【详解】
解:4的算术平方根是2,故选B.
本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.
3、D
【解析】
由题意得,
,,
∴=.
故选D.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .
4、D
【解析】
因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
【详解】
当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;
当3为底时,三角形的三边为3,2、2可以构成三角形,周长为1.
故选D.
本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
5、B
【解析】
解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB= =3,∴BD=2OB=6,∴菱形ABCD的面积是: AC•BD=×8×6=1.故选B.
点睛:此题考查了菱形的性质以及勾股定理.解题的关键是熟练运用勾股定理以及菱形的各种性质.
6、D
【解析】
根据平行四边形的性质与判定、矩形的性质和菱形的性质判断即可.
【详解】
解:A、菱形的四条边相等,错误;
B、矩形的对角线相等且平分,错误;
C、菱形的对角线垂直,错误;
D、一组对边平行且相等的四边形是平行四边形,正确.
故选D.
本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质和菱形的性质,难度一般.
7、C
【解析】
试题分析:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选C.
点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.
8、D
【解析】
利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.
【详解】
解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:,此2种方式结果一样,可得:
a(1+22%)(1+30%)=,即,
故选择:D.
此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①, ②, ③.
【解析】
①根据二次根式的性质化简即可解答
②根据立方根的性质计算即可解答
③根据积的乘方,同底数幂的除法,进行计算即可解答
【详解】
①=
②=-3
③=4x =4x
此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则
10、k<0
【解析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.
【详解】
解:∵一次函数y=kx+3的图象不经过第三象限,
∴经过第一、二、四象限,
∴k
相关试卷
这是一份2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省南京市宁海中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。