|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年江苏省泰兴市西城初级中学数学九上开学经典试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省泰兴市西城初级中学数学九上开学经典试题【含答案】01
    2024-2025学年江苏省泰兴市西城初级中学数学九上开学经典试题【含答案】02
    2024-2025学年江苏省泰兴市西城初级中学数学九上开学经典试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省泰兴市西城初级中学数学九上开学经典试题【含答案】

    展开
    这是一份2024-2025学年江苏省泰兴市西城初级中学数学九上开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
    A.①②B.②③C.①③D.②④
    2、(4分)下列方程中是一元二次方程的是( )
    A.x2﹣1=0B.y=2x2+1C.x+ =0D.x2+y2=1
    3、(4分)如图,在平行四边形中,对角线、相交于,,、、分别是、、的中点,下列结论:
    ①;②;③;④平分;⑤四边形是菱形.
    其中正确的是( )
    A.①②③B.①③④C.①②⑤D.②③⑤
    4、(4分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
    A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0
    5、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AD、AB边上的中点,连接EF,若EF=,OC=2,则菱形ABCD的面积为( )
    A.2B.4C.6D.8
    6、(4分)某商品降价后欲恢复原价,则提价的百分数为( ).
    A.B.C.D.
    7、(4分)直线的截距是 ( )
    A.—3B.—2C.2D.3
    8、(4分)如图,函数和的图象相交于A(m,3),则不等式的解集为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.
    10、(4分)学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.
    11、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
    12、(4分)如图,中,点是边上一点,交于点,若,,的面积是1,则的面积为_________.
    13、(4分)如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在▱ABCD中,E、F分别是对角线BD上的两点.且BF=DE,求证:AF=CE.
    15、(8分)如图1、如图2均是边长为1的正方形网格,请按要求用实线画出顶点在格点上的图形。
    (1)在图1上,画出一个面积最大的矩形ABCD,并求出它的面积;
    (2)在图2上,画出一个菱形ABCD,并求出它的面积。
    16、(8分)如图,在正方形ABCD的外侧,作等边三角形BCE,连接AE,DE.
    (1)求证:AE=DE
    (2)过点D作DF⊥AE,垂足为F,若AB=2cm,求DF的长.
    17、(10分)如图,直线:与轴、轴分别交于、两点,在轴上有一点,动点从点开始以每秒1个单位的速度匀速沿轴向左移动.
    (1)点的坐标:________;点的坐标:________;
    (2)求的面积与的移动时间之间的函数解析式;
    (3)在轴右边,当为何值时,,求出此时点的坐标;
    (4)在(3)的条件下,若点是线段上一点,连接,沿折叠,点恰好落在轴上的点处,求点的坐标.
    18、(10分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在函数y=中,自变量x的取值范围是
    20、(4分)小李掷一枚均匀的硬币次,出现的结果如下:正、反、正、反、反、反、正、正、反、反、反、正,则出现“反面朝上”的频率为______.
    21、(4分)如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.
    22、(4分)如图,OP平分∠MON,PA⊥ON,垂足为A,Q是射线OM上的一个动点,若P、Q两点距离最小为8,则PA=____.
    23、(4分)如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图在△ABC中,AD是BC边上的高,CE是AB边上的中线,且∠B=2∠BCE,求证:DC=BE.
    25、(10分)某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):
    (1)求y1的函数解析式;
    (2)请问方案二中每月付给销售人员的底薪是多少元?
    (3)小丽应选择哪种销售方案,才能使月工资更多?
    26、(12分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
    (1)根据题意,填写下表:
    (2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
    (3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
    当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
    B、∵四边形ABCD是平行四边形,
    ∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
    C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
    D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
    故选C.
    2、A
    【解析】
    解:A.x2﹣1=0是一元二次方程,故A正确;
    B.y=2x2+1是二次函数,故B错误;
    C.x+=0是分式方程,故C错误;
    D.x2+y2=1中含有两个未知数,故D错误.
    故选A.
    3、B
    【解析】
    由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.
    【详解】
    解:∵四边形ABCD是平行四边形
    ∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
    又∵BD=2AD,
    ∴OB=BC=OD=DA,且点E 是OC中点,
    ∴BE⊥AC,故①正确,
    ∵E、F分别是OC、OD的中点,
    ∴EF∥CD,EF=CD,
    ∵点G是Rt△ABE斜边AB上的中点,
    ∴GE=AB=AG=BG
    ∴EG=EF=AG=BG,无法证明GE=GF,故②错误,
    ∵BG=EF,AB∥CD∥EF
    ∴四边形BGFE是平行四边形,
    ∴GF=BE,且BG=EF,GE=GE,
    ∴△BGE≌△FEG(SSS)故③正确
    ∵EF∥CD∥AB,
    ∴∠BAC=∠ACD=∠AEF,
    ∵AG=GE,
    ∴∠GAE=∠AEG,
    ∴∠AEG=∠AEF,
    ∴AE平分∠GEF,故④正确,
    若四边形BEFG是菱形
    ∴BE=BG=AB,
    ∴∠BAC=30°
    与题意不符合,故⑤错误
    故选:B.
    本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
    4、B
    【解析】
    试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.
    解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,
    显然,这些点在点A与点B之间.
    故选B.
    5、B
    【解析】
    由三角形中位线定理可得BD=2EF=2,由菱形的性质可得AC⊥BD,AC=2AO=4,由菱形的面积公式可求解.
    【详解】
    ∵E、F分别是AD、AB边上的中点,
    ∴BD=2EF=2,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=CO=2,
    ∴AC=4,
    ∵菱形ABCD的面积=×AC×BD=4,
    故选B.
    本题考查了菱形的性质,三角形中位线定理,熟练运用菱形的面积公式是本题的关键.
    6、C
    【解析】
    解:设原价为元,提价百分数为,则,解得,故选.
    7、A
    【解析】
    由一次函数y=kx+b在y轴上的截距是b,可求解.
    【详解】
    ∵在一次函数y=2x−1中,b=−1,
    ∴一次函数y=2x−1的截距b=−1.
    故选:A.
    本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.
    8、C
    【解析】
    解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
    ∴3=2m,解得m=.
    ∴点A的坐标是(,3).
    ∵当时,y=2x的图象在y=ax+4的图象的下方,
    ∴不等式2x<ax+4的解集为.
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、5
    【解析】
    根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.
    【详解】
    解:由题意可知,1+3+x+4+5+6=4×6,
    解得:x=5,
    所以这组数据的众数是5.
    故答案为5.
    此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.
    10、北偏西25°方向距离为300m
    【解析】
    根据题意作出图形,即可得到大刚家相对于小亮家的位置.
    【详解】
    如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m
    由图可知∠CBE=∠BCD,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    即∠ABE-∠CBE=∠ACD+∠BCD,
    ∴85°-∠CBE=35°+∠CBE,
    ∴∠CBE=25°,
    ∴∠ABC=∠ACB=60°,
    ∴△ABC为等边三角形,则BC=300m,
    ∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m
    故填:北偏西25°方向距离为300m.
    此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.
    11、3≤S≤1.
    【解析】
    根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.
    【详解】
    ∵点A、B的坐标分别为(-5,0)、(-2,0),
    ∴AB=3,
    y=-2x2+4x+8=-2(x-1)2+10,
    ∴顶点D(1,10),
    由图象得:当0≤x≤1时,y随x的增大而增大,
    当1≤x≤3时,y随x的增大而减小,
    ∴当x=3时,即m=3,P的纵坐标最小,
    y=-2(3-1)2+10=2,
    此时S△PAB=×2AB=×2×3=3,
    当x=1时,即m=1,P的纵坐标最大是10,
    此时S△PAB=×10AB=×10×3=1,
    ∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;
    故答案为3≤S≤1.
    本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.
    12、
    【解析】
    利用△BFE∽△DFA,可求出△DFA的面积,再利用来求出△BAF的面积,即可得△ABD的面积,它的2倍即为的面积.
    【详解】
    解:中,BE∥AD,
    ∴△BFE∽△DFA,
    ∴.
    而△BEF的面积是1,
    ∴S△DFA=.
    又∵△BFE∽△DFA
    ∴.
    ∵,即可知S△BAF=.
    而S△ABD=S△BAF+S△DFA
    ∴S△AFD=.
    ∴▱ABCD的面积=×2=.
    故答案为.
    本题考查的是利用相似形的性质求面积,把握相似三角形的面积比等于相似比的平方是解决本题的重点.
    13、
    【解析】
    连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.
    【详解】
    解:如图,连接OB,过点O作OD⊥AB于D,
    ∵在的垂直平分线上,
    ∴OB=OC,
    ∵,,,
    ∴OA2+OB2=32+42=25=AB2,
    ∴△ABC为直角三角形,
    ∵S△ABO=AO·OB=AB·OD,
    ∴OD= =.
    故答案为.
    此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】
    连接AC交BD于点O,连接AE,CF,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,然后求出OE=OF,再根据对角线互相平分的四边形是平行四边形即可证明.
    【详解】
    证明:如图,连接AC交BD于点O,
    在▱ABCD中,OA=OC,OB=OD,
    ∵BF=DE,
    ∴BF-OB =DE-OD,
    即OE=OF,
    ∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);
    ∴AF=CE.
    此题主要考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.
    15、 (1)10;(2)4
    【解析】
    (1) 根据要求画出矩形再求出面积即可;(2)根据要求画出菱形再求出面积即可.
    【详解】
    (1)如图1,四边形ABCD是面积最大的矩形
    由勾股定理得,AB=,BC=2,矩形ABCD的面积=10
    (2)如图2,四边形ABCD是菱形
    由图可得,BD=2,AC=4,菱形ABCD的面积=4
    本题考查了作图-应用与设计,矩形的判定和性质,菱形的判定和性质,解题的关键是灵活运用所学知识解决问题.
    16、(1)详见解析;(2)
    【解析】
    (1)证明△ABE≌△DCE,可得结论;
    (2)作辅助线,构建直角三角形,根据等腰三角形的性质得∠BCG=30°,∠DEF=30°,利用正方形的边长计算DE的长,从而得DF的长.
    【详解】
    (1)证明:∵四边形ABCD是正方形,
    ∴AB=CD,∠ABC=∠DCB=90°,
    ∵△BCE是等边三角形,
    ∴BE=CE,∠EBC=∠ECB=60°,
    即∠ABE=∠DCE=150°,
    ∴△ABE≌△DCE,
    ∴AE=DE;
    (2)解:过点E作EG⊥CD于G,
    ∵DC=CE,∠DCE=150°,
    ∴∠CDE=∠CED=15°,
    ∴∠ECG=30°,
    ∵CB=CD=AB=2,
    ∴EG=1,CG=,
    在Rt△DGE中,DE=,
    在Rt△DEF中,∠EDA=∠DAE=90°﹣15°=75°
    ∴∠DEF=30°,
    ∴DF=DE=(cm).
    本题考查了正方形的性质、等边三角形的性质、全等三角形的判定和性质、等腰三角形的判定和性质,题目的综合性很好,难度不大.
    17、(1),;(2);(3);(4)
    【解析】
    (1)在中,分别令y=0和x=0,则可求得A、B的坐标;
    (2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;
    (3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标; .
    (4)由勾股定理可得:,折叠可知;,可得:,故,,设,则,在中,根据勾股定理可列得方程,即可求出答案.
    【详解】
    解:(1)在中, 令y=0可求得x=4, 令x=0可求得y=2,
    ∴A(4,0),B(0,2)
    故答案为:(4,0) ;(0,2)
    (2)由题题意可知AM=t,
    ①当点M在y轴右边时,OM=OA-AM=4-t,
    ∵N (0,4)
    ∴ON=4,
    ∴,
    即;
    当点在轴左边时,则OM=AM-OA=t-4,
    ∴,
    即.

    (3)若,则有,
    ∴.
    (4)由(3)得,,,
    ∴.
    ∵沿折叠后与重合,
    ∴,
    ∴,
    ∴此时点在轴的负半轴上,,,
    设,则,
    在中,,
    解得,
    ∴.
    本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、折叠及分类讨论思想等知识.本题考查知识点较多,综合性很强.
    18、每月实际生产智能手机1万部.
    【解析】
    分析:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.
    详解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,
    根据题意得:,
    解得:x=20,
    经检验,x=20是原方程的解,且符合题意,
    ∴(1+50%)x=1.
    答:每月实际生产智能手机1万部.
    点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.
    20、
    【解析】
    根据题意可知“反面朝上”一共出现7次,再利用概率公式进行计算即可
    【详解】
    “反面朝上”一共出现7次,
    则出现“反面朝上”的频率为
    此题考查频率,解题关键在于掌握频率的计算方法
    21、
    【解析】
    根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.
    【详解】
    ∵四边形是菱形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴;
    故答案为:.
    本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.
    22、1.
    【解析】
    根据题意点Q是財线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直结上各点连接的所有绒段中,垂线段最短,所以过点P作PQ垂直OM.此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ.
    【详解】
    过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,
    ∵OP平分∠MON,PA⊥ON,PQ⊥OM,
    ∴PA=PQ=1,
    故答案为1.
    此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上
    各点连接的所有段中,垂线段最短,找出满足题意的点Q的位置.
    23、答案不唯一,如∠ACB=90° 或∠BAC=45°或∠B=45°
    【解析】
    先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.
    【详解】
    ∠ACB=90°时,四边形ADCF是正方形,
    理由:∵E是AC中点,
    ∴AE=EC,
    ∵DE=EF,
    ∴四边形ADCF是平行四边形,
    ∵AD=DB,AE=EC,
    ∴DE=BC,
    ∴DF=BC,
    ∵CA=CB,
    ∴AC=DF,
    ∴四边形ADCF是矩形,
    点D. E分别是边AB、AC的中点,
    ∴DE//BC,
    ∵∠ACB=90°,
    ∴∠AED=90°,
    ∴矩形ADCF是正方形.
    故答案为∠ACB=90°.
    此题考查正方形的判定,解题关键在于掌握判定法则
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    连接DE.想办法证明∠BCE=∠DEC即可解决问题.
    【详解】
    证明:连接DE.
    ∵AD是BC边上的高,CE是AB边上的中线,
    ∴∠ADB=90°,AE=BE,
    ∴BE=AE=DE,
    ∴∠EBD=∠BDE,∵∠B=2∠BCE,
    ∴∠BDE=2∠BCE,
    ∵∠BDE=∠BCE+∠DEC,
    ∴∠BCE=∠DEC,
    ∴BE=DC.
    本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    25、(1);(2)方案二中每月付给销售人员的底薪是560元;(3)当销售件数少于70件时,提成方案二好些;当销售件数等于70件时,两种提成方案一样;当销售件数多于70件时,提成方案一好些.
    【解析】
    解:(1)设所表示的函数关系式为,由图象,得
    解得:,
    所表示的函数关系式为;
    (2)∵每件商品的销售提成方案二比方案一少8元,
    把代入得解得
    方案二中每月付给销售人员的底薪是560元;
    (3)由题意,得
    方案一每件的提成为元,
    方案二每件的提成为元,
    设销售m件时两种工资方案所得到的工资数额相等,由题意,得

    解得:.
    销售数量为70时,两种工资方案所得到的工资数额相等;
    当销售件数少于70件时,提成方案二好些;
    当销售件数等于70件时,两种提成方案一样;
    当销售件数多于70件时,提成方案一好些.
    26、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
    【解析】
    (1)根据甲、乙公司的收费方式,求出y值即可;
    (2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
    (3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
    【详解】
    解:(1)当x=0.5时,y甲=22×0.5=11;
    当x=1时,y乙=16×1+3=19;
    当x=3时,y甲=22+15×2=52;
    当x=3时,y甲=22+15×3=1.
    故答案为:11;19;52;1.
    (2)当0<x≤1时,y1=22x;
    当x>1时,y1=22+15(x-1)=15x+2.

    y2=16x+3(x>0);
    (3)当x>3时,
    当y1>y2时,有15x+2>16x+3,
    解得:x<3;
    当y2=y2时,有15x+2=16x+3,
    解得:x=3;
    当y1<y2时,有15x+2<16x+3,
    解得:x>3.
    ∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
    本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
    题号





    总分
    得分
    快递物品重量(千克)
    0.5
    1
    3
    4

    甲公司收费(元)
    22

    乙公司收费(元)
    11
    51
    67

    相关试卷

    2024-2025学年江苏省泰兴市黄桥初级中学数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年江苏省泰兴市黄桥初级中学数学九年级第一学期开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省泰兴市实验初级中学数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024-2025学年江苏省泰兴市实验初级中学数学九年级第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南通市北城中学数学九上开学经典试题【含答案】: 这是一份2024-2025学年江苏省南通市北城中学数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map