终身会员
搜索
    上传资料 赚现金

    2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】第1页
    2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】第2页
    2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
    ①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE+DC=DE
    其中正确的个数是( )
    A.1B.2C.0D.3
    2、(4分)已知直角三角形两边的长为3和4,则此三角形的周长为( )
    A.12B.7+C.12或7+D.以上都不对
    3、(4分)下列二次拫式中,最简二次根式是( )
    A.B.C.D.
    4、(4分)如图,在中,,,,则( )
    A.3B.C.D.6
    5、(4分)以下是某市自来水价格调整表(部分):(单位:元/立方米)
    则调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象是( )
    A.B.C.D.
    6、(4分)下列调查中,最适合采用全面调查(普查)方式的是( )
    A.对重庆市初中学生每天阅读时间的调查
    B.对端午节期间市场上粽子质量情况的调查
    C.对某批次手机的防水功能的调查
    D.对某校九年级3班学生肺活量情况的调查
    7、(4分)如图,在矩形中,点的坐标为,则的长是( )
    A.B.C.D.
    8、(4分)如果,那么( )
    A.B.C.D.x为一切实数
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.
    10、(4分)从长度为2、3、5、7的四条线段中任意选取三条,这三条线段能够构成三角形的概率是_________
    11、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.
    12、(4分)如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.
    如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;
    如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.
    13、(4分)如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)问题:探究函数的图象与性质.
    小明根据学习函数的经验,对函数的图象与性质进行了研究.
    下面是小明的研究过程,请补充完成.
    (1)自变量的取值范围是全体实数,与的几组对应值列表如下:
    其中,m= n= ;
    (2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.
    (3)观察图象,写出该函数的两条性质.
    15、(8分)已知两地相距,甲、乙两人沿同一公路从 地出发到地,甲骑摩托车,乙骑自行车,如图中分别表示甲、乙离开地的距离 与时间 的函数关系的图象,结合图象解答下列问题.
    (1)甲比乙晚出发___小时,乙的速度是___ ;甲的速度是___.
    (2)若甲到达地后,原地休息0.5小时,从地以原来的速度和路线返回地,求甲、乙两人第二次相遇时距离地多少千米?并画出函数关系的图象.
    16、(8分)计算:
    (1)
    (2)()﹣()
    17、(10分)4月23日世界读书日之际,总书记提倡和鼓励大家多读书、读好书.在接受俄罗斯电视台专访时,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”为响应号召,建设书香校园,某初级中学对本校初一、初二两个年级的学生进行了课外阅读知识水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
    (收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下
    (整理数据)按如下分段整理样本数据:
    (分析数据)对样本数据进行如下统计:
    (得出结论)
    (1)根据统计,表格中a、b、c、d的值分别是______、______、______、______.
    (2)若该校初一、初二年级的学生人数分别为1000人和1200人,请估计该校初一、初二年级这次考试成绩90分以上的总人数.
    18、(10分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
    (1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
    (2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
    20、(4分)若关于的分式方程有解,则的取值范围是_______.
    21、(4分)如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 .
    22、(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是 .
    23、(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是 度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,从一个大矩形中挖去面积为和的两个小正方形.
    (1)求大矩形的周长;
    (2)若余下部分(阴影部分)的面积与一个边长为的正方形的面积相等,求的值.
    25、(10分)如图,已知带孔的长方形零件尺寸(单位:),求两孔中心的距离.
    26、(12分)如图,在平面直角坐标系中,A9m,0、Bm,0m0,以AB为直径的⊙M交y轴正半轴于点C,CD是⊙M的切线,交x轴正半轴于点D,过A作AECD于E,交⊙于F.
    (1)求C的坐标;(用含m的式子表示)
    (2)①请证明:EFOB;②用含m的式子表示AFC的周长;
    (3)若,,分别表示的面积,记,对于经过原点的二次函数,当时,函数y的最大值为a,求此二次函数的解析式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    ①根据旋转的性质得BF=DC、∠FBA=∠C、∠BAF=∠CAD,由∠ABC+∠C=90°知∠ABC+∠FBA=90°,即可判断①;
    ②由∠BAC=90°、∠DAE=45°知∠BAE+∠CAD=∠DAE=45°,继而可得∠EAF=∠EAD,可判断②;
    ③由BF=DC、EF=DE,根据BE+BF>EF可判断③;
    ④根据BE+BF=EF可判断④.
    【详解】
    ∵△ADC绕点A顺时针旋转90°后,得到△AFB,
    ∴△ADC≌△AFB,
    ∴BF=DC,∠FBA=∠C,∠BAF=∠CAD,
    又∵∠ABC+∠C=90°,
    ∴∠ABC+∠FBA=90°,即∠FBC=90°,
    ∴BF⊥BC,故①正确;
    ∵∠BAC=90°,∠DAE=45°,
    ∴∠BAE+∠CAD=∠DAE=45°,
    ∴∠BAE+∠BAF=∠DAE=45°,即∠EAF=∠EAD,
    在△AED和△AEF中,
    ∵ ,
    ∴△AED≌△AEF,故②正确;
    ∵BF=DC,
    ∴BE+DC=BE+BF,
    ∵△AED≌△AEF,
    ∴EF=DE,
    在△BEF中,∵BE+BF>EF,
    ∴BE+DC>DE,故③错误,
    ∵∠FBC=90°,
    ∴BE+BF=EF,
    ∵BF=DC、EF=DE,
    ∴BE+DC=DE,④正确;
    故选:D.
    此题考查勾股定理,旋转的性质,全等三角形的判定,解题关键在于掌握各性质定义.
    2、C
    【解析】
    设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+=7+.故选C
    3、A
    【解析】
    检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;
    B、被开方数含能开得尽方的因数或因式,故B不符合题意;
    C、被开方数含分母,故C不符合题意;
    D、被开方数含能开得尽方的因数或因式,故D不符合题意;
    故选:A.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    4、A
    【解析】
    根据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求解.
    【详解】
    解:∵在△ABC中,∠C=90°,∠A=30°,
    ∴BC= AB= ×6=3,
    故选:A.
    本题考查了含30度的直角三角形的性质,正确掌握定理是解题的关键.
    5、B
    【解析】
    根据水费等于单价乘用水量,30立方米内单价低,水费增长的慢,超过30立方米的部分水费单价高,水费增长快,可得答案.
    【详解】
    解:30立方米内每立方是0.82元,超过30立方米的部分每立方是1.23元,
    调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象先增长慢,后增长快,B符合题意,
    故选:B.
    本题考查了函数图象,单价乘以用水量等于水费,单价低水增长的慢,单价高水费增长的快.
    6、D
    【解析】
    A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;
    B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
    C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;
    D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;
    故选D.
    7、C
    【解析】
    连接OB,根过B作BM⊥x轴于M,据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.
    【详解】
    解:连接OB,过B作BM⊥x轴于M,
    ∵点B的坐标是(1,4),
    ∴OM=1,BM=4,由勾股定理得:OB=,
    ∵四边形OABC是矩形,
    ∴AC=OB,
    ∴AC=,
    故选:C.
    本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.
    8、B
    【解析】
    ∵,
    ∴x≥0,x-6≥0,
    ∴.
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.
    【详解】
    解:在△ABQ和△EBQ中,

    ∴△ABQ≌△EBQ(ASA),
    ∴BE=AB=5,AQ=QE,
    同理可求CD=AC=7,AP=PD,
    ∴DE=CD-CE=CD-(BC-BE)=2,
    ∵AP=PD,AQ=QE,
    ∴PQ=DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    10、
    【解析】
    三角形的任意两边的和大于第三边,任意两边之差小于第三遍,本题只要把三边代入,看是否满足即可,把满足的个数除以4即可
    【详解】
    长度为2、3、5、7的四条线段中任意选取三条共有:2、3、5;2、3、7;3、5、7;2、5、7,共4种情况,能够构成三角形的只有3、5、7这一种,所以概率是
    本题结合三角形三边关系与概率计算知识点,掌握好三角形三边关系是解题关键
    11、乙
    【解析】
    根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.
    【详解】
    解:∵0.5>0.4
    ∴S甲2>S乙2,则成绩较稳定的同学是乙.
    故答案为:乙.
    此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.
    12、25 4
    【解析】
    (1)先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AF和EF的长,利用三角形的面积公式即可得出△EFG的面积;
    (2)首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长.
    【详解】
    解:(1)如图1过G作GH⊥AD
    在Rt△GHE中,GE=BG=1,GH=8
    所以,EH==6,
    设AF=x,则


    解得:x=3
    ∴AF=3,BF=EF=5
    故△EFG的面积为:×5×1=25;
    (2)如图2,过F作FK⊥BG于K
    ∵四边形ABCD是矩形
    ∴,
    ∴四边形BGEF是平行四边形
    由对称性知,BG=EG
    ∴四边形BGEF是菱形
    ∴BG=BF=1,AB=8,AF=6
    ∴KG=4
    ∴FG=.
    本题主要考查了翻折,勾股定理,矩形的性质,平行四边形和菱形的性质与判定,熟练掌握相关几何证明方法是解决本题的关键.
    13、3或
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBD=∠CBD,
    ∴∠FBD=∠FDB,
    ∴FB=FD=11cm,
    ∵AF=5cm,
    ∴AD=16cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=8cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    分两种情况:①当点Q在EC上时,根据PF=EQ可得: 5-t=8-2t,
    解得:t=3;
    ②当Q在BE上时,根据PF=QE可得:5-t=2t-8,
    解得:t=.
    所以,t的值为:t=3或t=.
    故答案为:3或.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)m = 2, n = -1 ;(2)见解析;(3)见解析.
    【解析】
    (1)将n、m对应的x的值带入解析式即可;
    (2)根据表格中的点坐标再直角坐标系上标出,在连接各点即可;
    (3)根据函数的最值、对称性、增减性回答即可.
    【详解】
    解:(1)将带入函数中得:,
    将带入中得:;
    (2)如图所示:
    (3)(答案不唯一,合理即可)
    1、函数关于直线对称;
    2、函数在时取得最小值,最小值为-1
    本题是新型函数题型,是中考必考题型,解题的关键是通过函数的基本性质以及图象的分析得到相关的值和特殊的函数性质.
    15、(1)1,15,60;(2)42,画图见解析.
    【解析】
    (1)根据函数图象可以解答本题;
    (2)根据题意画出函数图像,可以求得所在直线函数解析式和所在直线的解析式,从而可以解答本题.
    【详解】
    解:(1)由图象可得,甲比乙晚出发1小时,乙的速度是:30÷2=15km/h,甲的速度是:60÷1=60km/h,
    故答案为1,15,60;
    (2)画图象如图.
    设甲在返回时对应的所在直线函数解析式为:,
    由题意可知,M(2.5,60),N(3.5,0),
    将点M、N代入可得: ,解得
    甲在返回时对应的函数解析式为:
    设所在直线的解析式为:,
    ∴,解得,
    所在直线的解析式为:,
    联立,
    消去得
    答:甲、乙两人第二次相遇时距离地42千米.
    本题考查一次函数的应用,解题的关键是明确题意,正确识图并找出所求问题需要的条件.
    16、(1)-1;(2)2+3.
    【解析】
    (1)利用积的乘方得到原式,然后根据平方差公式计算;
    (2)先把二次根式化为最简二次根式,然后去括号合并即可.
    【详解】
    (1)
    =[(+2)(﹣2)]2019
    =(3﹣4)2019
    =﹣1;
    (2)()﹣()
    =4+2﹣2
    =2+3.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    17、(1)4,8,87,1;(2)800人.
    【解析】
    (1)利用收集的数据以及中位数,众数的定义即可解决问题.
    (2)利用样本估计总体的思想解决问题即可.
    【详解】
    解:(1)由数据可知初二年级60≤x<70的有4人,80≤x<90有8人,初一年级20人,中间两个数是86,1,故中位数==87,初二年级20人,出现次数最多的是1.故众数是1.由题意a=4,b=8,c=87,d=1.
    故答案为:4,8,87,1.
    (2)初一年级成绩90分以上的人数为1000×=300(人),
    初二年级成绩90分以上的人数为1200×=500(人)
    300+500=800(人)
    答:初一、初二年级这次考试成绩90分以上的总人数为800人.
    本题考查方差,平均数,中位数,众数,样本估计总体等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.
    18、(1)y=-30x+39200(0≤x≤1);(2) 从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元
    【解析】
    试题分析:弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.
    试题解析:(1)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100-x)吨,乙库运往A库(1-x)吨,乙库运到B库(10+x)吨.
    则,解得:0≤x≤1.
    y=12×20x+10×25(100-x)+12×15(1-x)+8×20×[110-(100-x)]
    =-30x+39200
    其中0≤x≤1
    (2)上述一次函数中k=-30<0
    ∴y随x的增大而减小
    ∴当x=1吨时,总运费最省
    最省的总运费为:-30×1+39200=37100(元)
    答:从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.
    【详解】

    ∵矩形纸片中,,
    现将其沿对折,使得点C与点A重合,点D落在处,
    ∴ ,
    在中,,
    即 解得 ,
    故答案为:.
    本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.
    20、
    【解析】
    分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.
    【详解】
    解:,
    去分母,得:,
    整理得:,
    显然,当时,方程无解,
    ∴;
    当时,,
    ∴,
    解得:;
    ∴的取值范围是:;
    故答案为:.
    此题考查了分式方程的解,始终注意分母不为0这个条件.
    21、1.
    【解析】
    ∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.
    ∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.
    又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.
    ∴△DOE的周长="OD+OE+DE=" OD +(BC+CD)=3+9=1,即△DOE的周长为1.
    22、1.
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
    【详解】
    ∵E、F分别是AB、AC的中点,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×3=6,
    ∴菱形ABCD的周长=4BC=4×6=1.
    故答案为1.
    本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    23、144
    【解析】
    连接OE,
    ∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,
    ∴点E,A,B,C共圆,
    ∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,
    ∴点E在量角器上对应的读数是:144°,
    故答案为144.
    二、解答题(本大题共3个小题,共30分)
    24、(1)28cm;(2)2
    【解析】
    (1)利用正方形的性质得出两个小正方形的边长,进而得出大矩形的长和宽,即可得出答案;
    (2)求阴影部分面积的算术平方根即可.
    【详解】
    解:(1)∵两个小正方形面积为50cm2和32cm2,
    ∴大矩形的长为:cm,大矩形的宽为:cm,
    ∴大矩形的周长为2×+2×=28cm,
    (2)余下的阴影部分面积为:×-50-32=8(cm2),
    ∴a2=8,
    ∴a=2,
    即的值2.
    此题主要考查了二次根式的应用,正确得出大矩形的长和宽是解题关键.
    25、50mm
    【解析】
    连接两孔中心,然后如图构造一个直角三角形进而求解即可.
    【详解】
    如图所示,AC即为所求的两孔中心距离,
    ∴==50.
    ∴两孔中心距离为50mm
    本题主要考查了勾股定理的运用,根据题意自己构造直角三角形是解题关键.
    26、(1)C(0,3m);
    (2)①证明见解析;②8m+;
    (3) 或
    【解析】
    (1)连接MC,先得出MC=5m,MO=4m,再由勾股定理得出OC=3m,即可得出点C的坐标;
    (2)①由弦切角定理得∠ECF=∠EAC,再证出FC=BC,再证出△CEF≌△COB,可得到EF=OB;
    ②由△CEF≌△COB可得AE=AO,用勾股定理求出AC、BC.再用等量代换计算可得到AFC的周长
    (3)先用三角函数求出OD,再用勾股定理列出方程,得到m=1,从而求得的面积,再求出k值。再根据二次函数的性质列出方程求得a的值,从而问题得解。
    【详解】
    解:(1)连接MC,
    ∵A9m,0、Bm,0m0,
    ∴AB=10m,MC=5m,MO=4m
    由勾股定理得
    解得:OC=3m
    ∴C(0,3m)
    (2)①证明:连接CF,
    ∵CE是⊙M的切线,
    ∴∠ECF=∠EAC,
    ∵AB是直径,
    ∴∠ACB=90°
    ∴∠CAB=∠BCO,
    ∵A,F,C,B共圆,
    ∴∠EFC=∠OBC,
    又∵AE⊥CE
    ∴∠CEF=∠BOC=90°,
    ∴∠ECF=∠BCO,
    ∴∠EAC=∠CAB
    ∴CF=CB
    在△CEF和△COB中
    ∴△CEF≌△COB
    ∴EF=BO
    ②∵△CEF≌△COB
    ∴CE=CO,
    ∴△ACE≌△ACO(HL)
    ∴AE=AO

    AFC的周长=AF+FC+AC=AE-EF+FC+AC
    =AO-BO+FC+AC
    =9m-m++
    =8m+
    (3)∵CD是⊙M的切线,
    易证∠OCD=∠OMC
    ∴sin∠OMC= sin∠OCD


    在Rt△OCD中,
    而CO=3m
    ∴m=1
    ∴AF=8,CE=3,

    二次函数的图象过原点,则c=0

    对称轴为直线
    当时,即
    分两种情况,a<0时,由函数的性质可知,时,y=a,

    解得
    ∴此二次函数的解析式为:
    A>0时,由函数的性质可知,x=4时,y=a,
    ∴a=16a-4
    解得
    ∴此二次函数的解析式为:
    综上,此二次函数的解析式为:或
    故答案为:或
    本题是一个难度较大的综合题,考查了二次函数的性质,圆的切线,圆周角定理,也考查了利用三角函数解直角三角形的知识,综合性强,需要认真理解题意,灵活运用所学知识分析和解题。
    题号





    总分
    得分
    批阅人
    用水类别
    现行水价
    拟调整水价
    一、居民生活用水
    0.72
    1、一户一表
    第一阶梯:月用水量0~30立方米/户
    0.82
    第二阶梯:月用水量超过30立方米/户部分
    1.23

    -4
    -3
    -2
    -1
    0
    4


    2
    1
    0
    n
    0
    1
    m
    3
    4

    初一年级
    88
    60
    44
    91
    71
    88
    97
    63
    72
    91
    81
    92
    85
    85
    95
    31
    91
    89
    77
    86
    初二年级
    77
    82
    85
    88
    76
    87
    69
    93
    66
    84
    90
    88
    67
    88
    91
    96
    68
    97
    59
    88
    分段
    年级
    0≤x<60
    60≤x<70
    70≤x<80
    80≤x<90
    90≤x≤100
    初一年级
    2
    2
    3
    7
    6
    初二年级
    1
    a
    2
    b
    5
    统计量
    年级
    平均数
    中位数
    众数
    方差
    初一年级
    78.85
    c
    91
    291.53
    初二年级
    81.95
    86
    d
    115.25
    路程(千米)
    运费(元/吨•千米)
    甲库
    乙库
    甲库
    乙库
    A库
    20
    15
    12
    12
    B库
    25
    20
    10
    8

    相关试卷

    2024-2025学年江苏省无锡市锡山区天一实验学校九上数学开学学业水平测试试题【含答案】:

    这是一份2024-2025学年江苏省无锡市锡山区天一实验学校九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省无锡市青阳片数学九上开学预测试题【含答案】:

    这是一份2024-2025学年江苏省无锡市青阳片数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省期无锡市天一实验学校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年江苏省期无锡市天一实验学校九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map