年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年江苏省兴化市乐吾实验学校数学九上开学统考模拟试题【含答案】

    2024-2025学年江苏省兴化市乐吾实验学校数学九上开学统考模拟试题【含答案】第1页
    2024-2025学年江苏省兴化市乐吾实验学校数学九上开学统考模拟试题【含答案】第2页
    2024-2025学年江苏省兴化市乐吾实验学校数学九上开学统考模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省兴化市乐吾实验学校数学九上开学统考模拟试题【含答案】

    展开

    这是一份2024-2025学年江苏省兴化市乐吾实验学校数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知长方形ABCD中AB = 8cm,BC = 10cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,则CF的长为( )
    A.2cmB.3cmC.4cmD.5cm
    2、(4分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
    A.B.C.D.
    3、(4分)下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是( )
    A.B.C.D.
    4、(4分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为( )
    A.20B.21C.14D.7
    5、(4分)如图,菱形中,交于点,于点,连接,若,则的度数是( )
    A.35°B.30°C.25°D.20°
    6、(4分)最早记载勾股定理的我国古代数学名著是( )
    A.《九章算术》B.《周髀算经》C.《孙子算经》D.《海岛算经》
    7、(4分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
    A.2、40 B.42、38 C.40、42 D.42、40
    8、(4分)如图,在中,,点、分别是、的中点,点是的中点,若,则的长度为( )
    A.4B.3C.2.5D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为_____.
    10、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______
    11、(4分)不等式 的解集为________.
    12、(4分)若分式的值为0,则x的值为_________;
    13、(4分)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.
    (1)m= ;
    (2)求点C的坐标;
    (3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.
    15、(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
    (1)请按下列要求画图:
    ①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
    ②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.
    (1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.
    16、(8分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
    (1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
    (2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
    17、(10分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.
    (1)求第一次每个笔记本的进价是多少?
    (2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?
    18、(10分)在课外活动中,我们要研究一种四边形--筝形的性质.
    定义:两组邻边分别相等的四边形是筝形(如图1).
    小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.
    下面是小聪的探究过程,请补充完整:
    (1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 ;
    (2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;
    (3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,一架云梯长米,斜靠在一面墙上,梯子顶端离地面米,要使梯子顶端离地面米,则梯子的底部在水平面方向要向左滑动______米.
    20、(4分)已知.若整数满足.则=_________.
    21、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .

    22、(4分)如图, 是 的中位线, 平分 交于 , ,则 的长为________.

    23、(4分)若是整数,则最小的正整数n的值是_____________。
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知直线和上一点,用尺规作的垂线,使它经过点.(保留作图痕迹,不写作法)
    25、(10分)作图题:在图(1)(2)所示抛物线中,抛物线与轴交于、,与轴交于,点是抛物线的顶点,过平行于轴的直线是它的对称轴,点在对称轴上运动.仅用无刻度的直尺画线的方法,按要求完成下列作图:

    图 ① 图 ②
    (1)在图①中作出点,使线段最小;
    (2)在图②中作出点,使线段最大.
    26、(12分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由两工程队先后接力完成.工作队每天整治12米,工程队每天整治8米,共用时20天.
    (1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:
    甲: 乙:
    根据甲、乙两名同学所列的方程组,请你分别指出未知数表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:
    甲:x表示________________,y表示_______________;
    乙:x表示________________,y表示_______________.
    (2)求两工程队分别整治河道多少米.(写出完整的解答过程)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    分析:由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE≌Rt△AFE,所以AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,进而得到结论.
    详解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm).
    故选C.
    点睛:本题主要考查了图形的翻折变换以及勾股定理、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.
    2、C
    【解析】
    设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.
    【详解】
    如图,设B′C′与CD的交点为E,连接AE,
    在Rt△AB′E和Rt△ADE中,

    ∴Rt△AB′E≌Rt△ADE(HL),
    ∴∠DAE=∠B′AE,
    ∵旋转角为30°,
    ∴∠DAB′=60°,
    ∴∠DAE=×60°=30°,
    ∴DE=1×=,
    ∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
    故选C.
    本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
    3、A
    【解析】
    试题分析:根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.
    A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;
    B、影子的方向不相同,故本选项错误;
    C、影子的方向不相同,故本选项错误;
    D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.
    故选A.
    考点:本题考查了平行投影特点
    点评:解答本题的关键是掌握平行投影的特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.
    4、C
    【解析】
    分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.
    【详解】
    解:当点E在AB段运动时,
    y=BC×BE=BC•x,为一次函数,由图2知,AB=3,
    当点E在AD上运动时,
    y=×AB×BC,为常数,由图2知,AD=4,
    故矩形的周长为7×2=14,
    故选:C.
    本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
    5、C
    【解析】
    根据直角三角形的斜边中线性质可得,根据菱形性质可得,从而得到度数,再依据即可.
    【详解】
    解:∵四边形是菱形,,
    ∵O为BD中点,.

    ∴在中,,


    故选:.
    本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.
    6、B
    【解析】
    由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.
    【详解】
    最早记载勾股定理的我国古代数学名著是《周髀算经》,
    故选:B.
    考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.
    7、D
    【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
    【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
    将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
    故选D.
    【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
    8、C
    【解析】
    利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.
    【详解】
    解:在Rt△ABC中,
    ∵,点是的中点,
    ∴AD=BD= CD=AB=1,
    ∵BF=DF,BE=EC,
    ∴EF=CD=2.1.
    故选:C.
    本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3.
    【解析】
    试题分析:由平行四边形ABCD的对角线相交于点O,OE⊥BD,根据线段垂直平分线的性质,可得BE=DE,又由平行四边形ABCD的周长为30,可得BC+CD的长,继而可得△CDE的周长等于BC+CD.
    试题解析:∵四边形ABCD是平行四边形,
    ∴OB=OD,AB=CD,AD=BC,
    ∵平行四边形ABCD的周长为30,
    ∴BC+CD=3,
    ∵OE⊥BD,
    ∴BE=DE,
    ∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=3.
    考点:3.平行四边形的性质;3.线段垂直平分线的性质.
    10、0

    相关试卷

    2024-2025学年江苏省兴化市乐吾实验学校九年级数学第一学期开学经典试题【含答案】:

    这是一份2024-2025学年江苏省兴化市乐吾实验学校九年级数学第一学期开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省无锡市锡中学实验学校九上数学开学统考模拟试题【含答案】:

    这是一份2024-2025学年江苏省无锡市锡中学实验学校九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省兴化市乐吾实验学校2023-2024学年九上数学期末学业水平测试试题含答案:

    这是一份江苏省兴化市乐吾实验学校2023-2024学年九上数学期末学业水平测试试题含答案,共7页。试卷主要包含了下列说法正确的是,一元二次方程配方后可化为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map