2024-2025学年江苏省仪征市月塘中学数学九年级第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是( )
A.B.
C.D.
2、(4分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )
A.9B.12C.9D.18
3、(4分)如图,在中,对角线与相交于点,是边的中点,连接,若,,则( )
A.80°B.90°C.100°D.110°
4、(4分)一直尺与一个锐角为角的三角板如图摆放,若,则的度数为( )
A.B.C.D.
5、(4分)如图,在RtΔABC中,∠C=90°,BC=6,AC=8,则AB的长度为( )
A.7B.8C.9D.10
6、(4分)如图所示,E、F分别是□ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=2cm2,S△BQC=4cm2,则阴影部分的面积为( )
A.6 cm2B.8 cm2C.10 cm2D.12 cm2
7、(4分)若关于x的一元二次方程有一个根为0,则a的值为( )
A.B.C.D.2
8、(4分)将矩形按如图所示的方式折叠,得到菱形.若,则的长是( )
A.1B.C.D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是_____.
10、(4分)若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.
11、(4分)为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派__________________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)
12、(4分)已知关于的方程会产生增根,则的值为________.
13、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,如果 AD=4,BC=8 ,∠B =60° ,那么这个等腰梯形的腰 AB 的长等于____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停止旋转,在旋转过程中OG交AB于点M,OE交AD于点N.
(1)开始旋转前,即在图1中,连接NC.
①求证:NC=NA(M);
②若图1中NA(M)=4,DN=2,请求出线段CD的长度.
(2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.
(3)试探究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.
15、(8分)(阅读理解题)在解分式方程时,小明的解法如下:
解:方程两边都乘以x﹣3,得2﹣x=﹣1﹣2①.移项得﹣x=﹣1﹣2﹣2②.解得x③.
(1)你认为小明在哪一步出现了错误? (只写序号),错误的原因是 .
(2)小明的解题步骤完善吗?如果不完善,说明他还缺少哪一步?答: .
(3)请你解这个方程.
16、(8分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(2)若它们出发第5小时时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
17、(10分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?
18、(10分)感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.
探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF
应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若不等式组无解,则a的取值范围是___.
20、(4分)在菱形中,已知,,那么__________(结果用向量,的式子表示).
21、(4分)已知a=,b=,则a2-2ab+b2的值为____________.
22、(4分)当x=________时,分式的值为零.
23、(4分)正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答
25、(10分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.
(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在小正方形的顶点上,且平行四边形ABCD的面积为15.
(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在小正方形的顶点上,请直接写出菱形ABEF的面积;
26、(12分)小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况、他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:根据两函数图象所过的象限进行逐一分析,再进行选择即可.
解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
B、由函数y=ax+b过二、三、四象限可知,a<0,b<0;由函数的图象可知,a+b>0,两结论相矛盾,故不可能成立;
C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
故选B.
考点:反比例函数的图象;一次函数的图象.
点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
2、D
【解析】
根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论
【详解】
ABCD为平行四边形,
所以,AD∥BC,
所以,∠AEG=∠EGF,
由折叠可知:∠GEF=∠DEF=60°,
所以,∠AEG=60°,
所以,∠EGF=60°,
所以,三有形EGF为等边三角形,
因为EF=6,
所以,△GEF的周长为18
此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°
3、C
【解析】
根据平行四边形的性质得到DO=OB,∠ABC=∠ADC=50°,根据三角形中位线定理得到OE∥BC,根据平行线的性质得到∠ACB=∠COE=30°,利用三角形内角和定理计算即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴DO=OB,∠ABC=∠ADC=50°,
∵DO=OB,DE=EC,
∴OE∥BC,
∴∠ACB=∠COE=30°,
∴∠BAC=180°-50°-30°=100°,
故选:C.
本题考查的是平行四边形的性质、三角形中位线定理,掌握平行四边形的对角线互相平分是解题的关键.
4、C
【解析】
由直尺为矩形,有两组对边分别平行,则可求∠4的度数,再由三角形内角和定理可以求∠EAD,而∠2与∠EAD为对顶角,则可以求∠2=∠EAD.
【详解】
如图,
∵直尺为矩形,两组对边分别平行
∴∠1+∠4=180°
∴∠4=180°∠1=180°-115°=65°
∵∠EDA=∠4
∴在△EAD中,∠EAD=180°-∠E-∠EDA
∵∠E=30°
∴∠EAD=180°-∠E-∠EDA=180°-30°-65°=85°
∵∠2=∠EAD
∴∠2=85°
故选C.
此题主要考查平行线的性质,遇到三角板的题型,要注意在题中有隐藏着已知的度数.
5、D
【解析】
根据勾股定理即可得到结论.
【详解】
在Rt△ABC中,∠C=90°,BC=6,AC=8,
∴AB==10,
故选D.
本题考查了勾股定理,熟练掌握勾股定理是解题的关键.
6、A
【解析】
连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.
【详解】
连接E、F两点,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△EFC的FC边上的高与△BCF的FC边上的高相等,
∴S△EFC=S△BCF,
∴S△EFQ=S△BCQ,
同理:S△EFD=S△ADF,
∴S△EFP=S△ADP,
∵S△APD=1cm1,S△BQC=4cm1,
∴S四边形EPFQ=6cm1,
故阴影部分的面积为6cm1.
故选A.
本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.
7、C
【解析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值.
【详解】
把x=0代入方程有:
a2-4=0,
a2=4,
∴a=±2;
∵a-2≠0,
∴a=-2,
故选C.
本题考查的是一元二次方程的解,把方程的解代入方程可以求出字母系数的值.根据根与系数的关系,由两根之和可以求出方程的另一个根.
8、A
【解析】
由矩形可得是直角,由菱形的对角线平分每组对角,再由折叠可得,在直角三角形中,由边角关系可求出答案.
【详解】
解:由折叠得:
是矩形,
是菱形,
,
在中,,,
,
故选:.
本题考查矩形的性质、菱形的性质、折叠轴对称的性质以及直角三角形的边角关系等知识,求出,把问题转化到中,由特殊的边角关系可求出结果.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-8,4)或(8,-4)
【解析】
由在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,根据位似图形的性质,即可求得点E的对应点E′的坐标.
【详解】
∵点E(-4,2),以原点O为位似中心,相似比为2,把△EFO放大,
∴点E的对应点E′的坐标是:(-8,4)或(8,-4).
故答案为:(-8,4)或(8,-4).
此题考查了位似图形的性质.此题比较简单,注意位似图形有两个.
10、45
【解析】
由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.
【详解】
解:如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=1:3,
∴∠C=3∠B,
∴∠B+4∠B=180°,
解得:∠B=45°,
故答案为:45°.
本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
11、甲
【解析】
根据方差的定义,方差越小数据越稳定即可求解.
【详解】
解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,
而1.5<2.6<3.5<3.68,
∴甲的成绩最稳定,
∴派甲去参赛更好,
故答案为甲.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
12、1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k的值.
【详解】
解:方程两边都乘(x-4),得
2x=k
∵原方程增根为x=4,
∴把x=4代入整式方程,得k=1,
故答案为:1.
此题考查分式方程的增根,解题关键在于掌握增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
13、4
【解析】
过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.
【详解】
借钱:过作AE∥DC,交BC于E,
在等腰梯形ABCD中,AD∥BC,
∴四边形AECD是平行四边形
∴AB=AE,CE=AD=4
∵∠B=60°,AB=AE,
∴△ABE是等边三角形,
∴AB=BE
∵BE=BC-EC=8-4=4
∴AB=4.
故答案为:4
本题考查平行四边形的性质和等边三角形的判定与性质.
三、解答题(本大题共5个小题,共48分)
14、(1)①证明见解析;②;(1)ND1=NA1+CD1,证明见解析;(3)DN1+BM1=AM1+AN1,证明见解析.
【解析】
试题分析:(1)①由矩形的对角线互相平分得OA=OC,根据正方形的内角都是直角,得∠EOG=90°,用线段垂直平分线上的点到两端点的距离相等即可得;②用勾股定理计算即可;(1)连接BN,方法同(1)得到NB=ND,再用勾股定理即可;(3)延长GO交CD于H,连接MN,HN,先判断出BM=DH,OM=OH,再和前两个一样,得出MN=NH,再用勾股定理即可.
解:(1)①∵四边形ABCD是矩形,∴OA=OC,
∵四边形EFGO为正方形,∴∠EOG=90°,
∴NC=NA;
②由①得,NA=NC=4,DN=1,
根据勾股定理得CD==;
(1)结论:ND1=NA1+CD1,连接NB,
∵四边形ABCD是矩形,∴OB=OD,AB=CD,
∵四边形EFGO为正方形,∴∠EOG=90°,
∴ND=NB.
根据勾股定理得NB1=NA1+AB1=NA1+CD1=ND1;
(3)结论AN1+AM1=DN1+BM1,
延长GO交CD于H,连接MN,HN,
∵四边形ABCD是矩形,
∴OB=OD,∠OBM=∠ODH,
又∵∠BOM=∠DOH,
∴△BOM≌△DOH,
∴BM=DH,OM=OH,
∵四边形EFGO是正方形,
∴∠EOG=90°,
∴MN=NH,
在Rt△NDH中,NH1=DN1+DH1=DN1+BM1,
在Rt△AMN中,MN1=AM1+AN1,
∴DN1+BM1=AM1+AN1.
15、(1)①;﹣2没有乘以最简公分母;(2)小明得解题步骤不完善,少了检验;(3)分式方程无解.
【解析】
(1)出现错误的步骤为第一步,原因是各项都要乘以最简公分母;
(2)不完善,最后没有进行检验;
(3)写出正确解题过程即可.
【详解】
解:(1)出现错误的为①,原因是﹣2没有乘以最简公分母;
故答案为:①;﹣2没有乘以最简公分母;
(2)小明得解题步骤不完善,少了检验;
(3)去分母得:2﹣x=﹣1﹣2(x﹣3),
去括号得:2﹣x=﹣1﹣2x+6,
移项合并得:x=3,
经检验x=3是增根,分式方程无解.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
16、(1) ;(2)140千米,y乙=300﹣28x ,(0≤x≤);(3)或小时
【解析】
(1)由图知,该函数关系在不同的时间里表现出不同的关系,需分段表达,可根据待定系数法列方程,求函数关系式.(2)根据题意求出乙车速度,列出y乙与行驶时间x的函数关系式;(3)联立方程分段求出相遇时间.
【详解】
(1)由图象可知,甲车由A到B的速度为300÷3=100千米/时,由B到A的速度为千米/时,
则当0≤x≤3时:y甲=100x,
当3≤x≤时:y甲=300﹣80(x﹣3)=﹣80x+540,
∴y甲=,
(2)当x=5时,y甲=﹣80×5+540=140(千米),
则第5小时时,甲距离A140千米,则乙距离B140千米,则乙的速度为140÷5=28千米/时,
则y乙=300﹣28x (0≤x≤),
(3)当0≤x≤3时,
100x=300﹣28x,
解得x=.
当3≤x≤时,
300﹣28x=﹣80x+540,
x=.
∴甲、乙两车相遇的时间为或小时,
本题考查了一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.
17、梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.
【解析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
【详解】
解:∵在中,,,
∴.
∴
在中,,
∴.
∴
∴
∴梯子的顶端沿墙下滑时,梯子底端并不是也外移,
而是外移.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
18、探究:证明见详解;应用:
【解析】
探究:根据正方形的性质得到AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.求得∠ACB=∠ACD=45°,根据全等三角形的性质得到ED=EB,∠EDC=∠EBC,求得∠EFB=∠EDC,根据等腰三角形的判定定理即可得到结论;
应用:连接DF,求得△DEF是等腰直角三角形,根据勾股定理得到CF=,由三角形的面积公式即可得到结论.
【详解】
解:探究:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.
∴∠ACB=∠ACD=45°,
又∵EC=EC,
∴△EDC≌△EBC(SAS),
∴ED=EB,∠EDC=∠EBC,
∵EF⊥ED,
∴∠DEF=90°,
∴∠EFC+∠EDC=180°
又∵∠EBC+∠EBF=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF;
应用:连接DF,
∵EF=DE,∠DEF=90°,
∴△DEF是等腰直角三角形,
∵DE=2,
∴EF=2,DF= ,
∵∠DCB=90°,CD=1,
∴CF=,
∴四边形EFCD的面积=S△DEF+S△CDF= .
故答案为:.
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的识别图形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a<1.
【解析】
解出不等式组含a的解集,与已知不等式组 无解比较,可求出a的取值范围.
【详解】
解不等式3x﹣2≥ ,得:x≥1,
解不等式x﹣a≤0,得:x≤a,
∵不等式组无解,
∴a<1,
故答案为a<1.
此题考查解一元一次不等式组,解题关键在于掌握运算法则
20、
【解析】
根据菱形的性质可知,,然后利用即可得出答案.
【详解】
∵四边形是菱形,
∴,
∵,,
∴
∴
故答案为:.
本题主要考查菱形的性质及向量的运算,掌握菱形的性质及向量的运算法则是解题的关键.
21、8
【解析】
二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.
【详解】
a2-2ab+b2=(a-b)2=.
故答案为8.
本题考查了二次根式的混合运算,熟练化简二次根式是解题的关键.
22、3
【解析】
根据分式值为0的条件:分子为0,分母不为0,即可得答案.
【详解】
∵分式的值为零,
∴x-3=0,x+5≠0,
解得:x=3,
故答案为:3
本题考查分式值为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式值为0的条件是解题关键.
23、(63,32).
【解析】
试题分析:∵直线,x=0时,y=1,∴A1B1=1,点B2的坐标为(3,2),
∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,
∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,
∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,
∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,
即点A4的坐标为(7,8),
据此可以得到An的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1,
即点An的坐标为(2n﹣1﹣1,2n﹣1),
∴点A6的坐标为(25﹣1,25),
∴点B6的坐标是:(26﹣1,25)即(63,32),
故答案为(63,32).
考点:1.一次函数图象上点的坐标特征;2.规律型.
二、解答题(本大题共3个小题,共30分)
24、特快列车的速度为100千米时,高铁的速度为250千米时.
【解析】
设特快列车的速度为x千米时,则高铁的速度为千米时,根据时间路程速度结合高铁比特快列车少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设特快列车的速度为x千米时,则高铁的速度为千米时,
根据题意得:,
解得:,
经检验,是原分式方程的解,
.
答:特快列车的速度为100千米时,高铁的速度为250千米时.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
25、 (1)见解析;(2)见解析;菱形ABEF的面积为8.
【解析】
(1)由图可知A、B间的垂直方向长为3,要使平行四边形的面积为15,结合网格特点则可以在B的水平方向上取一条长为5的线段,可得点C,据此可得平行四边形;
(2)根据网格特点,菱形性质画图,然后利用菱形所在正方形的面积减去三角形的面积以及小正方形的面积即可求得面积.
【详解】
(1)如图1所示,平行四边形ABCD即为所求;
(2)如图2所示,菱形ABCD为所求,
菱形ABCD的面积=4×4-4××3×1-2×1×1=16-6-2=8.
本题考查了作图——应用与设计,涉及了平行四边形的性质,菱形的性质等,正确把握相关图形的性质以及网格的结构特点是解题的关键.
26、(1)1200≤x<1400,1400≤x<1600;18人;5%;7.5%.(2)详见解析;(3)大约有338户.
【解析】
(1)、(2)比较简单,读图表以及频数分布直方图易得出答案.
(3)根据(1)、(2)的答案可以分析求解.求出各个分布段的数据即可.
【详解】
(1)根据题意可得出分布是:1200≤x<1400,1400≤x<1600;
1000≤x<1200中百分比占45%,所以40×0.45=18人;
1600≤x<1800中人数有2人,故占=0.05,故百分比为5%.
故剩下1400≤x<1600中人数有3,占7.5%.
(2)
(3)大于1000而不足1600的占75%,故450×0.75=337.5≈338户.
答:居民小区家庭属于中等收入的大约有338户.
本题的难度一般,主要考查的是频率直方图以及考生探究图表的能力.
题号
一
二
三
四
五
总分
得分
分组
频数
百分比
600≤x<800
2
5%
800≤x<1000
6
15%
1000≤x<1200
45%
9
22.5%
1600≤x<1800
2
合计
40
100%
2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
2024-2025学年江苏省句容市后白中学数学九年级第一学期开学综合测试试题【含答案】: 这是一份2024-2025学年江苏省句容市后白中学数学九年级第一学期开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省江阴市第一初级中学数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年江苏省江阴市第一初级中学数学九上开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。