2024-2025学年江西省崇仁县数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平行四边形ABCD中,若AB=5 cm, ,则( )
A.CD=5 cm, ,B.BC=5 cm, ,
C.CD=5 cm, ,D.BC=5 cm, ,
2、(4分)下列根式中是最简根式的是( )
A. B. C. D.
3、(4分)如图,一次函数的图象与轴,轴分别交于点,,则的取值范围是( )
A.B.C.D.
4、(4分)下而给出四边形ABCD中的度数之比,其中能判定四边形ABCD为平行四边形的是( ).
A.1:2:3:4B.1:2:2:3C.2:2:3:3D.2:3:2:3
5、(4分)武侯区某学校计划选购甲,乙两种图书为“初中数学分享学习课堂之生讲生学”初赛的奖品.已知甲图书的单价是乙图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书少10本,设乙种图书的价为x元,依据题意列方程正确的是( )
A.B.C.D.
6、(4分)如图,在平行四边形ABCD中,,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为
A.B.C.4D.8
7、(4分)反比例函数经过点(1,),则的值为( )
A.3B.C.D.
8、(4分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB∥DC,AD∥BCB.AB=DC,AD=BC
C.AO=CO,BO=DOD.AB∥DC,AD=BC
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形是矩形 ,是延长线上的一点,是上一点,;若,则 = ________ .
10、(4分)一直角三角形的两条直角边分别是4cm和3cm,则其斜边上中线的长度为 ___________.
11、(4分)写出一个轴对称图形但不是中心对称图形的四边形:__________________
12、(4分)若反比例函数的图象经过点,则的图像在_______象限.
13、(4分)在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,然后从中选择所有合适的整数作为的值分别代入求值.
15、(8分)某校八年级学生开展踢毽子比赛活动,每班选派5名学生参加,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),请根据表中数据解答下列问题:
(1)计算甲、乙两班的优秀率;
(2)求出甲、乙两班比赛数据的中位数和方差;
(3)根据(1)(2)的计算结果,请你判定甲班与乙班的比赛名次.
16、(8分)计算:(1)-;
(2)(1-)
17、(10分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天;
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元.
18、(10分)先化简,再求值:(1﹣)÷,其中x=+1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点P是正比例函数y=x与反比例函数在第一象限内的交点,PA⊥OP交x轴于点A,则△POA的面积为_______.
20、(4分)如图是由 5 个边长为 1 的正方形组成了“十”字型对称图形,则图中∠BAC 的度数是_________.
21、(4分)方程的解是_____.
22、(4分)如图,在Rt△ABC中,AC=8,BC=6,直线l经过点C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC= .
23、(4分)如果直线 y=kx+3 与两坐标轴围成三角形的面积为 3,则 k 的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在4×3的正方形网格中,每个小正方形的边长都为1.
(1)线段AB的长为 ;
(2)在图中作出线段EF,使得EF的长为,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.
25、(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.
(1)甲种服装进价为 元/件,乙种服装进价为 元/件;
(2)若购进这100件服装的费用不得超过7500元.
①求甲种服装最多购进多少件?
②该服装店对甲种服装每件降价元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?
26、(12分)某校八年级的体育老师为了解本年级学生对球类运动的爱好情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图所示的两幅不完整的统计图[说明:每位学生只选一种自己最喜欢的一种球类)请根据这两幅图形解答下列问题:
(1)此次被调查的学生总人数为 人.
(2)将条形统计图补充完整,并求出乒乓球在扇形中所占的圆心角的度数;
(3)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形性质得出AB=CD=5cm,∠B=∠D=55°,即可得出选项.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,
∵AB=5cm,∠B=55°,
∴CD=5cm,∠D=55°,
故选:C.
本题考查了平行四边形的性质,掌握知识点是解题关键.
2、B
【解析】
试题解析:A选项中,被开方数中含b2,所以它不是最简二次根式,故本选项错误;
B选项中,的被开方数不能因式分解,不含开方开的尽的因式,是最简二次根式,故本选项正确;
C选项中,被开方数含分母,所以它不是最简二次根式,故本选项错误;
D选项中,被开方数含能开得尽方的因数,所以它不是最简二次根式,故本选项错误.
故选B.
3、D
【解析】
由函数图像可知y随着x的增大而减小, 解不等式即可。
【详解】
解:由函数图像可知y随着x的增大而减小,
∴
解得:
故选:D.
本题考查了函数y=kx+b的图像与k值的关系,y随着x的增大而增大, ;y随着x的增大而减小,.掌握函数y=kx+b的图像与k值的关系是解题的关键.
4、D
【解析】
由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.
【详解】
解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.
本题考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.
5、A
【解析】
根据“600元单独购买甲种图书比单独购买乙种图书少10本”列出相应的分式方程,本题得以解决.
【详解】
由题意可得,
,
故选:A.
本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.
6、B
【解析】
由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.
【详解】
∵AE为∠DAB的平分线,
∴∠DAE=∠BAE,
∵DC∥AB,
∴∠BAE=∠DFA,
∴∠DAE=∠DFA,
∴AD=FD,又F为DC的中点,
∴DF=CF,
∴AD=DF=DC=AB=2,
在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,
∵平行四边形ABCD,
∴AD∥BC,
∴∠DAF=∠E,∠ADF=∠ECF,
在△ADF和△ECF中,,
∴△ADF≌△ECF(AAS),
∴AF=EF,
则AE=2AF=4.
故选B.
考点:1.平行四边形的性质;2.等腰三角形的判定与性质;3.勾股定理.
7、B
【解析】
此题只需将点的坐标代入反比例函数解析式即可确定k的值.
【详解】
把已知点的坐标代入解析式可得,k=1×(-1)=-1.
故选:B.
本题主要考查了用待定系数法求反比例函数的解析式,.
8、D
【解析】
根据平行四边形判定定理进行判断:
A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;
B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;
C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;
D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.
故选D.
考点:平行四边形的判定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
详解:∵四边形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
设∠ECD=x,则∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°.
故答案为:23°.
点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.
10、cm
【解析】
【分析】先利用勾股定理求出直角三角形的斜边长,然后再根据直角三角形斜边中线的性质进行解答即可.
【详解】直角三角形的斜边长为:=5cm,
所以斜边上的中线长为:cm,
故答案为:cm.
【点睛】本题考查了勾股定理、直角三角形斜边中线,熟知直角三角形斜边中线等于斜边的一半是解题的关键.
11、等腰梯形(答案不唯一)
【解析】
根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.
【详解】
是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等.
故答案为:等腰梯形(答案不唯一).
此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.
12、二、四
【解析】
用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.
【详解】
解:将点代入得,解得:
因为k<0,所以的图像在二、四象限.
故答案为:二、四
本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.
13、
【解析】
从特殊得到一般探究规律后,利用规律解决问题即可;
【详解】
∵直线l:y=x﹣与x轴交于点B1,
∴B1(1,0),OB1=1,△OA1B1的边长为1,
∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
∴A1B2=2A1B1=2,△A2B3A3的边长是2,
同法可得:A2B3=4,△A2B3A3的边长是22,
由此可得,△AnBn+1An+1的边长是2n,
∴△A2017B2018A2018的边长是1.
故答案为1.
本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.
三、解答题(本大题共5个小题,共48分)
14、,.
【解析】
将原式括号内两项通分并利用同分母分式的减法法则计算,再将除法运算化为乘法运算,约分后得到最简结果,然后从已知不等式解集中找出合适的整数解代入化简后的式子中,即可求出原式的值.
【详解】
.
不等式中的所有整数为,,0,1,2,
要使分式有意义,则,,
∴当时,原式.
本题考查了分式的化简求值,掌握分式的混合运算法则与分式有意义的条件是解题的关键.
15、(1)(1)甲班;乙班;(2)甲班的中位数是98,方差是75.2,乙班的中位数是100,方差是35.6(3)乙班名列第1名,甲班名列第2名
【解析】
(1)根据优秀率=优秀人数除以总人数计算,即可求出甲、乙两班优秀率;
(2)根据中位数的定义和方差的计算公式求解;
(3)优秀率高,中位数高的班级成绩较好,方差较低的班级成绩较稳定,所以选择优秀率,中位数高方差较低的班级.
【详解】
解:(1)甲班优秀率是
乙班优秀率是
(2)甲班成绩按从小到大排序为:90,96,98,100,116,
中间的数据为98,所以甲班的中位数是98,
甲班的平均数为(90+96+98+100+116)÷5=100
所以其方差为:;
乙班成绩按从小到大排序为:92,95,100,105,108
中间的数据为100,所以甲班的中位数是100,
甲班的平均数为(92+95+100+105+108)÷5=100
所以其方差为:;
所以甲班的中位数是98,方差是75.2,
乙班的中位数是100,方差是35.6
(3)∵甲班的优秀率低于乙班,甲班的中位数小于乙班,
∴乙班比赛成绩好于甲班,
又∵甲班方差大于乙班,
∴乙班成绩比甲班稳定,
∴乙班名列第1名,甲班名列第2名.
本题考查统计表, 中位数, 方差.通过对统计表进行分析,能熟练掌握中位数的定义和方差的计算公式及其所表示的意义是解决本题的关键.
16、(1);(2)a+1
【解析】
(1)直接化简二次根式进而合并得出答案;
(2)直接将括号里面通分进而利用分式的混合运算法则计算即可.
【详解】
(1)原式=2-+3
=;
(2)原式=×
=a+1.
此题主要考查了分式的混合运算以及二次根式的加减运算,正确掌握相关运算法则是解题关键.
17、(1)甲队单独完成此项工程需15天,乙队单独完成此项工程需10天;(2)甲队所得报酬8000元,乙队所得报酬12000元.
【解析】
(1)求工效,时间明显,一定是根据工作总量来列等量关系的.等量关系为:甲6天的工作总量+乙6天的工作总量=1;
(2)让20000×各自的工作量即可.
【详解】
解:(1)设甲队单独完成此项工程需x天,
由题意得
解之得x=15
经检验,x=15是原方程的解.
答:甲队单独完成此项工程需15天,
乙队单独完成此项工程需15×=10(天)
(2)甲队所得报酬:20000××6=8000(元)
乙队所得报酬:20000××6=12000(元)
本题主要考查了分式方程的应用.
18、.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
(1﹣)÷
=
=,
当x=+1时,原式=.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
P在y=x上可知△POA为等腰直角三角形,过P作PC⊥OA于点C,则可知S△POC=S△PCA=k=2,进而可求得△POA的面积为1.
【详解】
解:过P作PC⊥OA于点C,
∵P点在y=x上,
∴∠POA=15°,
∴△POA为等腰直角三角形,
则S△POC=S△PCA=k=2,
∴S△POA=S△POC+S△PCA=1,
故答案为1.
本题考查反比例函数y= (k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.
20、45.
【解析】
连接BC,通过计算可得AB=BC,再利用勾股定理逆定理证明△ABC是等腰直角三角形,从而得出结果.
【详解】
解:连接BC,因为每个小正方形的边长都是1,
由勾股定理可得,,,
∴AB=BC,,
∴∠ABC=90°.
∴∠BAC=∠BCA=45°.
故答案为45°.
本题考查了勾股定理及其逆定理、等腰直角三角形的判定和性质,解题的关键是连接BC,构造等腰直角三角形,而通过作辅助线构造特殊三角形也是解决角度问题的常见思路和方法.
21、x=﹣1.
【解析】
把方程两边平方后求解,注意检验.
【详解】
把方程两边平方得x+2=x2,
整理得(x﹣2)(x+1)=0,
解得:x=2或﹣1,
经检验,x=﹣1是原方程的解.
故本题答案为:x=﹣1.
本题考查无理方程的求法,注意无理方程需验根.
22、6.1或2
【解析】
分类讨论:(1)当∠PCA=90°时,不成立;
(2)∵Rt△ABC中,AC=8,BC=6,∴AB=2,
当∠APC=90°时,
∵∠PCA=∠CAB,∠APC=∠ACB,
∴△CPA∽△ACB,
∴=,
∴=,
∴PC=6.1.
(3)当∠CAP=90°时,
∵∠ACB=∠CAP=90°,∠PCA=∠CAB,
∴△PCA∽△BAC,
∴=,
∴PC=AB=2.
故答案为:6.1或2.
点睛:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应分类讨论;
(2)或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小;
(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式表示各边的长度,之后利用相似列方程求解.
23、±
【解析】
找到函数y=kx+3与坐标轴的交点坐标,利用三角形面积公式表示出面积,解方程即可.
【详解】
解:∵直线 y=kx+3 与两坐标轴的交点为(0,3)(,0)
∴与两坐标轴围成三角形的面积=·3·||=3
解得:k=
故答案为
本题考查了一次函数与坐标轴的交点问题,属于简单题,明确函数与x轴的交点有两个是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析。
【解析】
(1)利用勾股定理求出AB的长即可;
(2)根据勾股定理的逆定理,即可作出判断.
【详解】
(1)AB=;
(2)如图,EF=,CD=,
∵CD2+AB2=8+5=13,EF2=13,
∴CD2+AB2=EF2,
∴以AB、CD、EF三条线可以组成直角三角形.
本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.
25、(1)80;60;(2)①甲种服装最多购进75件;②当时,购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,购进甲种服装65件,乙种服装35件.
【解析】
(1)设乙服装的进价y元/件,则甲种服装进价为(y+20)元/件,根据题意列方程即可解答;
(2)①设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式组解答即可;
②首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设乙服装的进价y元/件,则甲种服装进价为元/件,根据题意得:
,
解得,
即甲种服装进价为80元/件,乙种服装进价为60元/件;
故答案为80;60;
(2)①设计划购买件甲种服装,则购买件乙种服装,根据题意得
,解得,
甲种服装最多购进75件;
②设总利润为元,购进甲种服装件.
则,且,
当时,,随的增大而增大,故当时,有最大值,即购进甲种服装75件,乙种服装25件;
当时,所有进货方案获利相同;
当时,,随的增大而减少,故当时,有最大值,即购进甲种服装65件,乙种服装35件.
本题考查了分式方程的应用,一次函数的应用,依据题意列出方程是解题的关键.
26、(1)200;(2)补全条形统计图见解析;乒乓球在扇形中所占的圆心角的度数为108°;(3)爱好足球和排球的学生共计228人.
【解析】
(1)读图可知喜欢足球的有40人,占20%,求出总人数;
(2)根据总人数求出喜欢乒乓球的人数所占的百分比,得出喜欢排球的人数,再根据喜欢篮球的人数所占的百分比求出喜欢篮球的人数,从而补全统计图;根据喜欢乒乓球的人数所占的百分比,即可得到乒乓球在扇形中所占的圆心角的度数;
(3)根据爱好足球和排球的学生所占的百分比,即可估计爱好足球和排球的学生总数.
【详解】
解:(1)∵喜欢足球的有40人,占20%,
∴一共调查了:40÷20%=200(人)
故答案为:200;
(2)∵喜欢乒乓球人数为60人,
∴所占百分比为:×100%=30%,
∴喜欢排球的人数所占的百分比是1-20%-30%-40%=10%,
∴喜欢排球的人数为:200×10%=20(人),
∴喜欢篮球的人数为200×40%=80(人),
由以上信息补全条形统计图得:
乒乓球在扇形中所占的圆心角的度数为:30%×360°=108°;
(3)爱好足球和排球的学生共计:760×(20%+10%)=228(人).
本题考查条形统计图和扇形统计图,解题的关键是必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
1号
2号
3号
4号
5号
总分
甲班
90
100
96
116
98
500
乙班
100
95
108
92
105
500
2024-2025学年江西省南昌市十学校数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江西省南昌市十学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年吉林省吉大附中九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年吉林省吉大附中九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省新野县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年河南省新野县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。