2024-2025学年江西省抚州市临川区第四中学数学九年级第一学期开学调研试题【含答案】
展开
这是一份2024-2025学年江西省抚州市临川区第四中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,E,F分别是线段BC,AD的中点,AB=2,AD=4,动点P沿EC,CD,DF的路线由点E运动到点F,则△PAB的面积s是动点P运动的路径总长x的函数,这个函数的大致图象可能是
A.AB.BC.CD.D
2、(4分)如图,中,于点,于点,,,.则等于( )
A.B.C.D.
3、(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为( )
A.或-B.或-C.或-D.或-
4、(4分)正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,C点的坐标为( )
A.(﹣1,2)B.(2,0)C.(2,1)D.(2,﹣1)
5、(4分)如图,在平面直角坐标系中,,,,…都是等腰直角三角形,其直角顶点,,,…均在直线上.设,,,…的面积分别为,,,…,根据图形所反映的规律,( )
A.B.C.D.
6、(4分)如图,在△ABC中,∠A=∠B= 45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为( )
A.2B.4C.8D.16
7、(4分)两个相似三角形的最短边分别为4cm和2cm它们的周长之差为12cm,那么大三角形的周长为( )
A.18cmB.24cmC.28cmD.30cm
8、(4分)如图,已知矩形中,与相交于,平分交于,,则的度数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式方程的解为_____.
10、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.
11、(4分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.
12、(4分)某市出租车白天的收费起步价为10元,即路程不超过时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为 ,乘车费为元,那么与之间的关系式为__________________.
13、(4分)如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组,并在数轴上表示出它的解集.
15、(8分)先化简(),再选取一个你喜欢的a的值代入求值.
16、(8分)解方程:
(1);
(2)(x﹣2)2=2x﹣1.
17、(10分)计算:
;
。
18、(10分)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是 ______
20、(4分)若代数式有意义,则x的取值范围是__________.
21、(4分)一个矩形的长比宽多1cm,面积是,则矩形的长为___________
22、(4分)如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为______.
23、(4分)已知四边形是平行四边形,且,,三点的坐标分别是,,则这个平行四边形第四个顶点的坐标为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.
(1)画出四边形ABFE关于直线EF对称的图形;
(2)若∠FDC=16°,直接写出∠GEF的度数为 ;
(3)若BC=4,CD=3,写出求线段EF长的思路.
25、(10分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:
根据上述图表提供的信息,解答下列问题:
(1)请你把上面的表格填写完整;
(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?
(3)假设在每个年级的决赛选手中分别选出2个参加决赛,你认为哪个年级的实力更强一些?请说明理由.
26、(12分)已知正比例函数与反比例函数.
(1)证明:直线与双曲线没有交点;
(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;
(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分点P在EC、CD、DF上运动,根据三角形面积公式进行求解即可得.
【详解】
当点P在EC上运动时,此时0≤x≤2,PB=2+x,则S△PAB==×2(2+x)=x+2;
当点P在CD运动时,此时211分,所以七年级实力更强些.
本题考查了折线统计图,此题要求同学们不但要看懂折线统计图,而且还要掌握方差、平均数、众数的运用.
26、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时, 当时, ;(3)当或时满足.
【解析】
(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;
(2)向上平移4个单位后,联立方程组,整理后得方程,因为直线与双曲线有且只有一个交点,所以方程有且只有一个解,利用根的判别式得出K的值,从而得到函数表达式;
(3)取时,作出函数图象,观察图象可得到结论.
【详解】
(1)证明:将和这两函数看成两个不定方程,联立方程组得:
两边同时乘得,
整理后得
利用计算验证得:
∵ 所以
方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点)
(2)向上平移4个单位后,这时刚好与双曲线有且只有一个交点.
联立方程组得:
两边同时乘得,整理后得
因为直线与双曲线有且只有一个交点,
∴方程有且只有一个解,即:,
将方程对应的值代入判别式得:
解得
综上所述:当时,,
当时, ,
(3)题目要求负实数的值,所以我们取时的函数图象情况.图象大致如下图所示:
计算可得交点坐标,
要使,即函数的图象在函数图象的上方即可,
由图可知,当或时函数的图象在函数,
图象的上方,即当或时满足
本题考查了反比例函数和一次函数,是一个综合题,解题时要运用数形结合的思想.
题号
一
二
三
四
五
总分
得分
七年级
八年级
平均数
85.7
_______
众数
_______
_______
方差
37.4
27.8
相关试卷
这是一份2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省浠水县巴河镇中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省永春县第一中学数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。