2024-2025学年江苏苏州高新区九上数学开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式从左到右的变形中,是分解因式的是( )
A.B.
C.D.
2、(4分)下列因式分解正确的是( )
A.x3﹣x=x(x2﹣1)B.x2+y2=(x+y)(x﹣y)
C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)2
3、(4分)若m>n,下列不等式不一定成立的是( )
A.m+2>n+2B.2m>2nC.>D.m2>n2
4、(4分)在下列图形中,既是中心对称图形又是轴对称图形的是
A.B.C.D.
5、(4分)八边形的内角和为( )
A.180°B.360°C.1 080°D.1 440°
6、(4分)如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间距离等于23米,则A、C两点间的距离为( )
A.46B.23C.50D.25
7、(4分)下列代数式中,是分式的是( )
A.B.C.D.
8、(4分)如图是本地区一种产品30天的销售图像,图1是产品销售量y(件)与时间t(天)的函数关系,图2是一件产品的销售利润z(元)与时间t(天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是( ).
A.第24天的销售量为200件B.第10天销售一件产品的利润是15元
C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:-=________.
10、(4分)已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.
11、(4分)已知,菱形中,、分别是、上的点,且,,则__________度.
12、(4分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:
根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是_____.
13、(4分)方程的根是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
(1)填空:△ABC≌△ ;AC和BD的位置关系是
(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.
(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是 cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为 cm.
15、(8分)如图1,P 为△ABC 内一点,连接 PA、PB、PC,在△PAB、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称 P 为△ABC 的自相似点.
(1)如图 2,已知 Rt△ABC 中,∠ACB=90°,CD 是 AB 上的中线,过点 B 作 BE⊥CD,垂足为 E,试说明 E 是△ABC 的自相似点.
(2)如图 3,在△ABC 中,∠A<∠B<∠C.若△ABC 的三个内角平分线的交 点 P 是该 三角形的自相似点,求该三角形三个内角的度数.
16、(8分)解分式方程:=
17、(10分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;
(2)在图2中画出线段AB的垂直平分线.
18、(10分)某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ,并请补全条形统计图;
(2)扇形统计图中“D”所对应的圆心角的度数是 ;
(3)若该市约有120万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.
20、(4分)以下是小明化简分式的过程.
解:原式
①
②
③
④
(1)小明的解答过程在第_______步开始出错;
(2)请你帮助小明写出正确的解答过程,并计算当时分式的值.
21、(4分)如图,将三角形纸片的一角折叠,使点B落在AC边上的F处,折痕为DE.已知AB=AC=3,BC=4,若以点E,F,C为顶点的三角形与△ABC相似,那么BE的长是_______.
22、(4分)实数在数轴上的对应点的位置如图所示,则__________.
23、(4分)已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移_____个单位长度得到的.
二、解答题(本大题共3个小题,共30分)
24、(8分)如果P 是正方形ABCD 内的一点,且满足∠APB+∠DPC=180°,那么称点P 是正方形 ABCD 的“对补点”.
(1)如图1,正方形ABCD 的对角线AC,BD 交于点M,求证:点M 是正方形ABCD 的对补点;
(2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.
25、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)当x>1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)在(1)的条件下,小明选择哪家快递公司更省钱?
26、(12分)如图,在方格纸中每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上
(1)作出△ABC以点C为旋转中心,顺时针旋转90°后的△A1B1C;
(2)以点O为对称中心,作出与△ABC成中心对称的△A2B2C2
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
A、是整式乘法,不符合题意;B、是因式分解,符合题意;C、右边不是整式的积的形式,不符合题意;D、右边不是整式的积的形式,不符合题意,
故选B.
2、D
【解析】
逐项分解因式,即可作出判断.
【详解】
A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;
B、原式不能分解,不符合题意;
C、原式不是分解因式,不符合题意;
D、原式=(m+2)2,符合题意,
故选:D.
此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.
3、D
【解析】
试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;
B、不等式的两边都乘以2,不等号的方向不变,故B正确;
C、不等式的两条边都除以2,不等号的方向不变,故C正确;
D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;
故选D.
【考点】不等式的性质.
4、C
【解析】
试题分析:根据轴对称图形与中心对称图形的概念可判断出只有C选项符合要求.故选C.
考点:1.中心对称图形;2.轴对称图形.
5、C
【解析】
试题分析:根据n边形的内角和公式(n-2)×180º 可得八边形的内角和为(8-2)×180º=1080º,故答案选C.
考点:n边形的内角和公式.
6、A
【解析】
试题分析:∵点EF分别是BA和BC的中点,
∴EF是△ABC的中位线,
∴AC=2EF=2×23=46米.
故选A.
考点:三角形中位线定理.
7、A
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
A、它的分母中含有字母,是分式,故本选项正确.
B、它的分母不中含有字母,不是分式,故本选项错误.
C、它的分母中不含有字母,不是分式,故本选项错误.
D、它的分母中不含有字母,不是分式,故本选项错误.
故选:A.
本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.
8、C
【解析】
图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对A做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,做出对B的判断,分别求出第12天和第30天的销售利润,对C、D进行判断.
【详解】
解:A、根据图①可得第24天的销售量为200件,故正确;
B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,
得,z=-t+25(0≤t≤20),
当20<t≤30时候,由图2知z固定为5,则:
,,当t=10时,z=15,因此B也是正确的;
C、第12天的销售利润为:[100+(200-100)÷24×12](25-12)=2150元,第30天的销售利润为:150×5=750元,不相等,故C错误;
D、第30天的销售利润为:150×5=750元,正确;
故选C.
考查一次函数的图象和性质、分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据算术平方根和立方根定义,分别求出各项的值,再相加即可.
【详解】
解:因为,所以.
故答案为1.
本题考核知识点:算术平方根和立方根. 解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.
10、1
【解析】
分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.
【详解】
解:当m=1时,原方程为2x+1=1,
解得:x=﹣,
∴m=1符合题意;
当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,
∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,
解得:m≤且m≠1.
综上所述:m≤.
故答案为:1.
本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.
11、
【解析】
先连接AC,证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后运用三角形外角性质,求出∠CEF的度数.
【详解】
如图,连接AC,
在菱形ABCD中,AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,
∵∠BAE+∠CAE=∠BAC=60°,
∠CAF+∠EAC=∠EAF=60°,
∴∠BAE=∠CAF,
∵∠B=∠ACF=60°,
在△ABE和△ACF中,
∠B=∠ACF,AB=AC,∠BAE=∠CAF,
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
∴60°+∠CEF=60°+23°,
解得∠CEF=23°.
故答案为23°.
本题考查了菱形的性质和全等三角形的判定,熟练掌握全等三角形的判定方法,结合等边三角形性质和外角定义是解决本题的关键因素.
12、乙
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵S甲2=10.96,S乙2=5.96,S丙2=12.32,
∴S丙2>S甲2>S乙2,
∴包装茶叶的质量最稳定是乙包装机.
故答案为乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、
【解析】
解1x4=31得x1=4或x1=-4(舍),再解x1=4可得.
【详解】
解:1x4=31,
x4=16,
x1=4或x1=-4(舍),
∴x=±1,
故答案为:x=±1.
本题考查解高次方程的能力,利用平方根的定义降幂、求解是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3),2.
【解析】
(1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;
(2)根据四条边都相等的四边形是菱形证明;
(3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.
【详解】
(1)由图可知,AB=AD,CB=CD,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS),
∵AB=AD,
∴点A在BD的垂直平分线上,
∵CB=CD,
∴点C在BD的垂直平分线上,
∴AC垂直平分BD,
∴AC⊥BD;
(2)四边形ABCD是菱形.
理由如下:由(1)可得AB=AD,CB=CD,
∵AB=BC,
∴AB=BC=CD=DA,
∴四边形ABCD是菱形;
(3)设点B到AD的距离为h,
在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,
在Rt△ADO中,AD==5,
S菱形ABCD=AC•BD=AD•h,
即×8×6=5h,
解得h=,
设拼成的正方形的边长为a,则a2=×8×6,
解得a=2cm.
所以,点B到AD的距离是cm,拼成的正方形的边长为2cm.
本题考查了全等三角形的判定与性质,菱形的判定与性质,勾股定理,读懂题目信息,找出三角形全等的条件是解题的关键.
15、(1)详见解析;(2)
【解析】
(1)根据已知条件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出结论;
(2)根据∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各内角的度数.
【详解】
解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中线,
∴CD=AB,
∴CD=BD,
∴∠BCE=∠ABC,
∵BE⊥CD,∴∠BEC=90°,
∴∠BEC=∠ACB,
∴△BCE∽△ABC,
∴E是△ABC的自相似点;
(2)∵P是△ABC的内心,∴∠PBC=∠ABC,∠PCB=∠ACB,
∵△ABC的内心P是该三角形的自相似点,
∴△BCP∽△ABC
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,
∴∠A+2∠A+4∠A=180°,
∴∠A=,
∴该三角形三个内角度数为:,,.
本题考查了相似三角形的判定以及三角形的内心作法和作一角等于已知角,此题综合性较强,注意从已知分析获取正确的信息是解决问题的关键.
16、x=1
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
方程两边都乘以x(x﹣2),得:x=1(x﹣2),
解得:x=1,
检验:x=1时,x(x﹣2)=1×1=1≠0,
则分式方程的解为x=1.
本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
17、(1)答案见解析;(2)答案见解析.
【解析】
试题分析:(1)根据等腰直角三角形的性质即可解决问题.
(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.
试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).
(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.
考点:作图—应用与设计作图.
18、 (1) 400,100;(2) 36°;(3) 81.6万人
【解析】
(1)由等级C的人数除以占的百分比,得出调查总人数即可,进而确定出等级B与等级D的人数,进而求出m与n的值;
(2)由D占的百分比,乘以360即可得到结果;
(3)根据题意列式计算即可得到结论.
【详解】
解:(1)m=140÷14%×40%=400;n=140÷14%﹣280﹣400﹣140﹣80=100;
条形统计图如下:
故答案为:400,100;
(2)扇形统计图中“D”所对应的圆心角的度数是 ×360°=36°;
故答案为:36°;
(3) ×120=81.6万人,
答:其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数81.6万人
此题考查统计表,扇形统计图,条形统计图,解题关键在于看懂图中数据
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8.
【解析】
根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.
【详解】
∵数据2,6,,10,8的平均数是6,
∴
∴x=4,
∴这组数据的方差是.
考点: 1.方差;2.平均数.
20、 (1) ②;(2)2
【解析】
根据分式的混合运算法则进行计算即可.
【详解】
(1)②,应该是.
(2)解:原式=
.
当时,
此题考查分式的混合运算,解题关键在于掌握运算法则.
21、或1.
【解析】
由于折叠前后的图形不变,要考虑△B′FC与△ABC相似时的对应情况,分两种情况讨论.
【详解】
解:根据△B′FC与△ABC相似时的对应关系,有两种情况:
①△B′FC∽△ABC时,,
又∵AB=AC=3,BC=4,B′F=BF,
∴,
解得BF=;
②△B′CF∽△BCA时,,
AB=AC=3,BC=4,B′F=CF,BF=B′F,
而BF+FC=4,即1BF=4,
解得BF=1.
故BF的长度是或1.
故答案为:或1.
本题考查相似三角形的性质.
22、
【解析】
首先根据数轴的含义,得出,然后化简所求式子,即可得解.
【详解】
根据数轴,可得
∴
原式=
故答案为.
此题主要考查绝对值的性质,熟练掌握,即可解题.
23、1
【解析】
依据直线y=kx+b与y=2x+1平行,且经过点(-3,4),即可得到直线解析式为y=2x+10,进而得到该直线可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
又∵直线经过点(-3,4),
∴4=-3×2+b,
解得b=10,
∴该直线解析式为y=2x+10,
∴可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.
故答案为:1.
本题主要考查了一次函数图象与几何变换,解决问题的关键是利用待定系数法求得直线解析式.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;
(2)对补点如:N(,).证明见解析
【解析】
试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2) 在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.
试题解析:
(1)
∵四边形ABCD是正方形,
∴ AC⊥BD.
∴ ∠DMC=∠AMB=90°.
即 ∠DMC+∠AMB=180°.
∴ 点M是正方形ABCD的对补点.
(2)对补点如:N(,).
说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
除(2,2)外的任意点均可.
证明(方法一):
连接AC ,BD
由(1)得此时对角线的交点为(2,2).
设直线AC的解析式为:y=kx+b,
把点A(1,1),C(3,3)分别代入,
可求得直线AC的解析式为:y=x.
则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.
连接AC,DN,BN,
∵ 四边形ABCD是正方形,
∴ DC=BC,∠DCN=∠BCN.
又∵ CN=CN,
∴ △DCN≌△BCN.
∴ ∠CND=∠CNB.
∵ ∠CNB+∠ANB=180°,
∴ ∠CND+∠ANB=180°.
∴ 点N是正方形ABCD的对补点.
证明(方法二):
连接AC ,BD,
由(1)得此时对角线的交点为(2,2).
设点N是线段AC上的一点(端点A,C及对角线交点除外),
连接AC,DN,BN,
∵ 四边形ABCD是正方形,
∴ DC=BC,∠DCN=∠BCN.
又∵ CN=CN,
∴ △DCN≌△BCN.
∴ ∠CND=∠CNB.
∵ ∠CNB+∠ANB=180°,
∴ ∠CND+∠ANB=180°.
∴ 点N是正方形ABCD除对角线交点外的对补点.
设直线AC的解析式为:y=kx+b,
把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.
在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).
25、 (1)y甲=15x+7,y乙=16x+3(2)当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4时,选甲快递公司省钱
【解析】
(1) 根据甲、 乙公司的收费方式结合数量关系,可得、 (元) 与x ( 千克) 之间的函数关系式;
(2)当x>1时,分别求出<、=、<时x的取值范围, 综上即可得出结论.
【详解】
(1)y甲=22+15(x-1)=15x+7,
y乙=16x+3.
(2)令y甲<y乙,即15x+7<16x+3,解得x>4,
令y甲=y乙,即15x+7=16x+3,解得x=4,
令y甲>y乙,即15x+7>16x+3,解得x<4,
综上可知:当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4时,选甲快递公司省钱.
本题主要考查一次函数的实际应用,注意准确列好方程及分类讨论思想在解题中的应用.
26、 (1)见解析;(1)见解析.
【解析】
(1)直接利用旋转的性质分别得出对应点位置进而得出答案;
(1)直接利用关于点对称的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C;
(1)如图所示:△A1B1C1.
此题主要考查了旋转变换,正确得出对应点位置是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲包装机
乙包装机
丙包装机
方差
10.96
5.96
12.32
组别
获取新闻的最主要途径
人数
A
电脑上网
280
B
手机上网
m
C
电视
140
D
报纸
n
E
其它
80
2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市姑苏区数学九上开学联考模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州市姑苏区数学九上开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。