年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    泰安市泰山区东岳中学2024-2025年九年级下册鲁教版数学第五章 圆单元检测B学案和答案

    泰安市泰山区东岳中学2024-2025年九年级下册鲁教版数学第五章 圆单元检测B学案和答案第1页
    泰安市泰山区东岳中学2024-2025年九年级下册鲁教版数学第五章 圆单元检测B学案和答案第2页
    泰安市泰山区东岳中学2024-2025年九年级下册鲁教版数学第五章 圆单元检测B学案和答案第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    泰安市泰山区东岳中学2024-2025年九年级下册鲁教版数学第五章 圆单元检测B学案和答案

    展开

    这是一份泰安市泰山区东岳中学2024-2025年九年级下册鲁教版数学第五章 圆单元检测B学案和答案,共10页。
    九年级数学第五章《圆》单元测试题B时间120分钟,满分150分一.选择题(每题4分,共48分)1.以已知点O为圆心,已知线段a为半径作圆,可以作(  )A.1个 B.2个 C.3个 D.无数个2.在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的(  )A. B. C. D.3.四边形ABCD内接于⊙O,BC是⊙O的直径,若∠ADC=120°,则∠ACB等于(  )A.30° B.40° C.60° D.80°4.下列命题是真命题的个数是(  )①直径所对的角是90°;②三点确定一个圆;③圆的切线垂直于过切线的半径;④相等的弦所对的圆周角相等;⑤三角形的内心是三角平分线交点;⑥三角形外心到三角形三个顶点距离相等;A.2个 B.3个 C.4个 D.5个5如图,正五边形ABCDE内接于⊙O,连接AC,则∠ACD的度数是(  )A.72° B.70° C.60° D.45°6.已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有(  )A.4个 B.3个 C.2个 D.1个如图,AB是⊙O的直径,D,C是⊙O上的点,∠ADC=115°,则∠BAC的度数是(  )A.25° B.30° C.35° D.40°第5题 第7题8.如图,⊙O是△ABC的外接圆,半径为4,连接OB,OC,OA,若∠CAO=40°,∠ACB=70°,则阴影部分的面积是(  )A.π B.π C.π D.π9.如图,点I为△ABC的内心,连接AI并延长,交△ABC的外接圆于点D,点E为弦AC的中点,连接CD,EI,IC,当AI=2CD,IC=6,ID=5时,IE的长为(  )A.5 B.4.5 C.4 D.3.510.圆柱形油桶(有盖)的底面直径为0.6m,母线长为1m,则油桶的表面积为( )A. 1.92π    B. 0.78π    C. 0.69π     D. 0.6π11.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上一点,且∠EPF=45°,则图中阴影部分面积为( )A.4-π B.4-2π C.8+π D.8-2π12.如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为(  )A.1 B.2﹣1 C. D.﹣1第11题第8题 第9题第12题二.填空题(每题4分,共24分)13.一个圆柱形容器的底面直径为2dm,要把一块圆心角为240°的扇形铁板做一个圆锥形的盖子,做成的盖子要能盖住圆柱形容器顶部,这个圆锥底面半径至少要有   dm.14.如图,在半径为4.5的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E,则tan∠OEA的值是   .15.如图,在△ABC中,∠B=90°,⊙O过点A、C,与AB交于点D,与BC相切于点C,若∠A=32°,则∠ADO=   .16.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=  .17.将一块三角板和半圆形量角器按图中方式叠放,点A、O在三角板上所对应的刻度分别是8cm、2cm,重叠阴影部分的量角器弧所对的扇形圆心角∠AOB=120°,若用该扇形AOB 围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为    cm.18.如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为   .第15题第16题第17题第14题第18题 三、解答题(本大题共7小题,满分78分) 19.(本题8分)如图,圆的弦AB、CD延长线交于P点,AD、BC交于Q点,∠P=28°,∠AQC=92°,求∠ABC的度数. 第19题20.(本题10分)如图,点C在以AB为直径的⊙O上,点D是BC的中点,连接OD并延长交⊙O于点E,作∠EBP=∠EBC,BP交OE的延长线于点P.(1)求证:PB是⊙O的切线;(2)若AC=2,PD=6,求⊙O的半径.第20题 21.(本题10分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;第21题 22.(本题12分)如图,已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于点D,E是AB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G.求证:(1)∠ACD=∠F; (2)AC2=AG·AF.第22题23.(本题12分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线;(3)若CF=4,求图中阴影部分的面积.第23题 24.(本题12分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.(1)求证:CF是⊙O的切线; (2)若sin ∠BAC=,求的值.第24题25.(本题14分)如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.(1)求证:直线AB是⊙O的切线;(2)若BC=2OC,求tan∠ADB的值;(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2,求AE•AP的值. 第五章《圆》单元测试题B参考答案与试题解析一.选择题A.C.A.A.A.B.A.C.C.B. A. D二.填空题13. . 14. 15.64° 16. 17. 2 18.12π﹣9三.解答题19.60°20.解:(1)证明:∵AB为直径,∴∠ACB=90°,又D为BC中点,O为AB中点,故OD=,OD∥AC,∴∠ODB=∠ACB=90°.∵OB=OE,∴∠OEB=∠OBE,又∵∠OEB=∠P+∠EBP,∠OBE=∠OBD+∠EBC,∴∠P+∠EBP=∠OBD+∠EBC,又∠EBP=∠EBC,∴∠P=∠OBD.∵∠BOD+∠OBD=90°,∴∠BOD+∠P=90°,∴∠OBP=90°.又OB为半径,故PB是⊙O的切线.(2)∵AC=2,由(1)得OD==1,又PD=6,∴PO=PD+OD=6+1=7.∵∠P=∠P,∠BDP=∠OBP=90°,∴△BDP∽△OBP.∴,即BP2=OP•DP=7×6=42,∴BP=.∴OB===.故⊙O的半径为.21.解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OE+DE)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;22.①连BC,证∠B=∠ACD=∠F;②证△ACG∽△AFC23.(1)证明:∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC.∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB.∴DB=DE,(2)连接CD.∵DA平分∠BAC,∴∠DAB=∠DAC.∴BD=CD.∵BD=DF,∴CD=DB=DF.∴∠BCF=90°.∴BC⊥CF,∴CF是⊙O的切线;(3)连接OD.∵O、D是BC、BF的中点,CF=4,∴OD=2,∵∠BCF=90°,∴∠BOD=90°,∴图中阴影部分的面积=扇形BOD的面积﹣△BOD的面积=.24. (1)证明:连接OC. ∵CE⊥AB,CF⊥AF,CE=CF, ∴AC平分∠BAF,即∠BAF=2∠BAC。 ∵∠BOC=2∠BAC,∴∠BOC=∠BAF。 ∴OC∥AF。∴CF⊥OC。∴CF是⊙O的切线。 (2)解:∵AB是⊙O的直径,CD⊥AB, ∴CE=ED,∠ACB=∠BEC=90°。 ∴S △CBD =2S △CEB ,∠BAC=∠BCE。∴△ABC∽△CBE。 ∴ 。∴25.(1 )证明:连接OA,∵CD是⊙O的直径,∴∠CAD=90°,∴∠OAC+∠OAD=90°,又∵OA=OD,∴∠OAD=∠ODA,又∵∠BAC=∠ADB,∴∠BAC+∠OAC=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为半径,∴直线AB是⊙O的切线;(2)解:∵∠BAC=∠ADB,∠B=∠B,∴△BCA∽△BAD,∴,设半径OC=OA=r,∵BC=2OC,∴BC=2r,OB=3r,在Rt△BAO中,AB=, 在Rt△CAD中,tan∠ADC=;(3)解:在(2)的条件下,AB=2r=2,∴r=,∴CD=2,在Rt△CAD中,,AC2+AD2=CD2,解得AC=2,AD=2,∵AP平分∠CAD,∴∠CAP=∠EAD,又∵∠APC=∠ADE,∴△CAP∽△EAD,∴,∴AE•AP=AC•AD=2×2=4.第25题

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map