2024-2025学年江西省萍乡市名校数学九年级第一学期开学达标测试试题【含答案】
展开
这是一份2024-2025学年江西省萍乡市名校数学九年级第一学期开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列由左到右的变形,属于因式分解的是( )
A.B.
C.D.
2、(4分)某校田径运动会上,参加男子跳高的16名运动员成绩如下表:
则这些运动员成绩的中位数是( )
A.1.5B.1.55C.1.60D.1.65
3、(4分)在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
A.B.C.D.
4、(4分)已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )
A.∠DAE=∠BAEB.∠DEA= ∠DABC.DE=BED.BC=DE
5、(4分)下列描述一次函数y=﹣2x+5的图象和性质错误的是( )
A.y随x的增大而减小B.直线与x轴交点的坐标是(0,5)
C.当x>0时y<5D.直线经过第一、二、四象限
6、(4分)如图,函数y1=-2x和的图象相交于点,则关于x的不等式的解集是( )
A.B.
C.D.
7、(4分)下列二次根式①,②,③,④,能与合并的是( )
A.①和②B.②和③C.①和④D.③和④
8、(4分)方程的根是( )
A.B.C.D.,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,的面积是,边的垂直平分线分别交,边于点,.若点为边的中点,点为线段上一动点,则周长的最小值为__________.
10、(4分)已知,,则的值为______
11、(4分) “a的3倍与b的差不超过5”用不等式表示为__________.
12、(4分)如果关于的一次函数的图像不经过第三象限,那么的取值范围________.
13、(4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.
15、(8分)我们知道一个“非负数的算术平方根”指的是“这个数的非负平方根”。据此解答下列问题:
(1)是的算术平方根吗?为什么?
(2)是的算术平方根吗?为什么?
(3)你能证明:吗?
16、(8分)如图,在四边形中,,点在上,,,.
(1)求的度数;
(2)直接写出四边形的面积为 .
17、(10分)一个二次函数的图象经过(﹣1,﹣1),(0,0),(1,9)三点
(1)求这个二次函数的解析式.
(2)若另外三点(x1,21),(x2,21),(x1+x2,n)也在该二次函数图象上,求n的值.
18、(10分)如图,点A和点B分别在x轴和y轴上,且OA=OB=4,直线BC交x轴于点C,S△BOC=S△ABC.
(1)求直线BC的解析式;
(2)在直线BC上求作一点P,使四边形OBAP为平行四边形(尺规作图,保留痕迹,不写作法).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若有意义,则的取值范围为_________.
20、(4分)若n边形的每个内角都是,则________.
21、(4分)将一次函数的图象沿轴方向向右平移1个单位长度得到的直线解析式为_______.
22、(4分)关于x的一次函数,当_________时,它的图象过原点.
23、(4分)数据101,98,102,100,99的方差是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)小聪从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小聪离家的距离(单位:)与时间(单位:)的图象。根据图象回答下列问题:
(1)体育场离小聪家______;
(2)小聪在体育场锻炼了______;
(3)小聪从体育场走到文具店的平均速度是______;
(4)小聪在返回时,何时离家的距离是?
25、(10分)如图,直线分别与轴、轴交于点,;直线分别与轴交于点,与直线交于点,已知关于的不等式的解集是.
(1)分别求出,,的值;
(2)求.
26、(12分)已知直线y=kx+3(1-k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.
实践操作
(1)当k=1时,直线l1的解析式为 ,请在图1中画出图象;当k=2时,直线l2的解析式为 ,请在图2中画出图象;
探索发现
(2)直线y=kx+3(1-k)必经过点( , );
类比迁移
(3)矩形ABCD如图2所示,若直线y=kx+k-2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据因式分解的意义,可得答案.
【详解】
A. 是整式的乘法,故A错误;
B. 没把一个多项式转化成几个整式积的形式,故B错误;
C. 把一个多项式转化成几个整式积的形式,故C正确;
D没把一个多项式转化成几个整式积的形式,故D错误.
故答案选:C.
本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.
2、B
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,据此可得.
【详解】
将这组数据从小到大的顺序排列后,处于中间位置的两个数都是1.55,那么由中位数的定义可知,这组数据的中位数是1.55(米).
故选:B
本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
3、C
【解析】
分析:根据第二象限内点的坐标特征,可得答案.
详解:由题意,得
x=-4,y=3,
即M点的坐标是(-4,3),
故选C.
点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.
4、C
【解析】
根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.
【详解】
解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;
B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;
C、无法证明DE=BE,故本选项符合题意;
D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.
故选B.
本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.
5、B
【解析】
由k的系数可判断A、D;利用不等式可判断C;令y=0可求得与x轴的交点坐标,可判断B,可得出答案.
【详解】
∵一次函数y=-2x+5中,k=-2<0,
∴y随x的增大而减小,
故A正确;
又∵b=5,
∴与y轴的交点在x轴的上方,
∴直线经过第一、二、四象限,
故D正确;
∵当x=0时,y=5,且y随x的增大而减小,
∴当x>0时,y<5,
故C正确;
在y=-2x+5中令y=0,可得x=2.5,
∴直线与x轴的交点坐标为(2.5,0),
故B错误;
故选:B.
本题主要考查一次函数的性质,掌握一次函数的增减性、与坐标轴的交点坐标是解题的关键,注意与不等式相结合.
6、D
【解析】
首先求出A点坐标,再以交点为分界,结合图象写出不等式−2x>ax+3的解集即可.
【详解】
∵函数y1=-2x过点A(m,3),
∴−2m=3,
解得:m=−1.5,
∴A(−1.5,3),
∴不等式−2x>ax+3的解集为.
故选:D.
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
7、C
【解析】
先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.
【详解】
解:,, ,,其中、与是同类二次根式,能与合并;
故选:C.
本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.
8、D
【解析】
此题用因式分解法比较简单,提取公因式,可得方程因式分解的形式,即可求解.
【详解】
解:x2−x=0,
x(x−1)=0,
解得x1=0,x2=1.
故选:D.
本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程两边公因式较明显,所以本题运用的是因式分解法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10
【解析】
连接AD,根据等腰三角形的性质可得而AD⊥BC,根据三角形的面积求出AD的长,由EF是AC的垂直平分线可得当AD,EF交点M时,周长的最小值为AD+CD的长,故可求解.
【详解】
连接AD,∵,点为边的中点,
∴AD⊥BC,
∵,的面积是,
∴AD=16×2÷4=8,
∵EF是AC的垂直平分线,
∴点C关于直线EF的对称点为A,
∴AD的长为CM+MD的最小值,
∴周长的最小值为AD+CD=8+BC=8+2=10.
故填:10.
此题主要考查对称轴的应用,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.
10、1
【解析】
根据同底数幂的乘法,底数不变指数相加,可得答案.
【详解】
am+n=m•an=4×5=1,
故答案是:1.
考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.
11、
【解析】
根据“a的3倍与b的差不超过5”,则.
【详解】
解:根据题意可得出:;
故答案为:
此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.
12、
【解析】
由一次函数的图象不经过第三象限,则,并且,解两个不等式即可得到m的取值范围.
【详解】
解:∵一次函数的图像不经过第三象限,
∴,,
解得:,
故答案为.
本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
13、.
【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
【详解】
解:根据勾股定理可得:
,即x2-8x+16+x2-4x+4= x2,
解得:x1=2(不合题意舍去),x2=10,
10-2=8(尺),
10-4=6(尺).
答:门高8尺,门宽6尺,对角线长10尺.
故答案为: .
本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、AC与EF互相平分,见解析.
【解析】
由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.
【详解】
AC与EF互相平分
∵▱ABCD
∴AB∥CD,AB=CD
∴∠BAC=∠ACD
∵AB=CD,AE=CF,BE=DF
∴△ABE≌△CDF
∴∠BAE=∠FCD且∠BAC=∠ACD
∴∠EAC=∠FCA
∴CF∥AE且AE=CF
∴四边形AECF是平行四边形
∴AC与EF互相平分
本题考查了平行四边形的性质,全等三角形的判定和性质,证AECF是平行四边形是本题的关键.
15、(1)不是;(2)是;(3)见解析.
【解析】
根据平方根与算术平方根的定义,以及绝对值的意义即可作出判断.
【详解】
(1)-2不是4的算术平方根,
∵(-2)2=4,
∴-2是4的平方根,
但-2<0,
∴-2不是4的算术平方根;
(2)2是4的算术平方根,
∵22=4,
∴2是4的算术平方根,
(3)可以证明:,
∵,,
∴.
此题主要考查了算术平方根的定义、绝对值的意义,算术平方根的概念易与平方根的概念混淆而导致错误.
16、(1);(2)四边形的面积为.
【解析】
(1)连接AE,得出△ABE是等腰直角三角形,得出∠AEB=45°,,在△ADE中,,得出∠AED=90°,即可得出结果;(2)证出△CDE是等腰直角三角形,得出,BC=BE+CE=3,证明四边形ABCD是直角梯形,由梯形面积公式即可得出结果.
【详解】
(1)连接,如图所示:
,,
,,
在中,,,
,
,
;
(2),,
是等腰直角三角形,
,
,
,
,
,
四边形是直角梯形,
四边形的面积;
故答案为.
本题考查了勾股逆定理,等腰直角三角形,直角梯形的面积,掌握勾股逆定理,等腰直角三角形的性质是解题的关键.
17、 (1)y=4x2+5x;(2)n=1.
【解析】
(1)先设出二次函数的解析式,然后将已知条件代入其中并解答即可;
(2)由抛物线的对称轴对称x1+x2=﹣,代入解析式即可求得n的值.
【详解】
解:(1)设二次函数的关系式为y=ax2+bx+c(a≠1),
∵二次函数的图象经过点(1,1),(﹣1,﹣1),(1,9)三点,
∴,解得,
所以二次函数的解析式是:y=4x2+5x;
(2)∵二次函数为y=4x2+5x,
∴对称轴为直线x=﹣=﹣,
∵三点(x1,21),(x2,21),(x1+x2,n)在该二次函数图象上,
∴=﹣,
∴x1+x2=﹣,
∴n=4×(﹣)2+5×(﹣)=1.
本题主要考查二次函数,掌握二次函数的图象和性质以及待定系数法是解题的关键.
18、(1);(2)见解析.
【解析】
(1)根据三角形面积公式得到OC=AC= OA=2,则C(2,0),然后利用待定系数法求直线BC的解析式;
(2)当AP⊥x轴时,AP∥OB,利用OC=AC可得到AP=OB,根据平行四边形的判定方法可得到四边形OBAP为平行四边形,于是过点A作x轴的垂线交直线BC于P即可.
【详解】
(1)依题意,A(4,0),B(0,4),
因为S△BOC=S△ABC,所以,C为OA中点,所以,C(2,0),
设直线BC的解析式为:,则有
,所以,k=-2,b=4,
直线BC的解析式为:
(2)过点A作AP垂直x轴,交BC的延长线于P,连结OP,点P为所求.
此题考查作图—复杂作图,待定系数法求一次函数解析式,平行四边形的判定,解题关键在于掌握作图法则
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根式有意义,被开方式要大于等于零.
【详解】
解:∵有意义,
∴2x0,
解得:
故填.
本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.
20、1
【解析】
根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
【详解】
解:∵n边形的每个内角都是120°,
∴每一个外角都是180°-120°=10°,
∵多边形外角和为310°,
∴多边形的边数为310÷10=1,
故答案为:1.
此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
21、
【解析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移1个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.
【详解】
解:可设新直线解析式为y=2x+b,
∵原直线y=2x经过点(0,0),
∴向右平移1个单位,图像经过(1,0),
代入新直线解析式得:b=,
∴新直线解析式为:.
故答案为.
此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后函数图像经过的一个具体点.
22、
【解析】
由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.
【详解】
解: 函数图像过原点
该函数为正比例函数
故答案为:
本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.
23、1
【解析】
先求平均数,再根据方差公式求方差.
【详解】
平均数 .x=(98+99+100+101+101)=100,
方差s1= [(98-100)1+(99-100)1+(100-100)1+(101-100)1+(101-100)1]=1.
故答案为1
本题考核知识点:方差. 解题关键点:熟记方差公式.
二、解答题(本大题共3个小题,共30分)
24、(1)2.5;(2)15;(3).(4)69分钟.
【解析】
(1)观察函数图象,即可解答;
(2)观察函数图象即可解答;
(3)根据速度=路程÷时间,根据函数图象即可解答
(4)设直线的解析式为,把D,E的坐标代入即可解答
【详解】
(1)2.5;(2)15;(3).
(4)设直线的解析式为.
由题意可知点,点,
,解得:,∴.
当时,,
解得:.
答:在69分钟时距家的距离是.
此题考查函数图象,解题关键在于看懂图中数据
25、(1),,;(2)
【解析】
(1)首先利用待定系数法确定直线的解析式,然后根据关于x的不等式的解集是得到点D的權坐标为,再将x=代入y=x+3,得:;将x=代入y=1-m求得m=1即可
(2)先确定直线与x轴的交点坐标,然后利用三角形的面积公式计算即可
【详解】
解:(1)∵直线分别与轴、轴交于点,,
,
解得:,,
∵关于的不等式的解集是,
∴点的横坐标为,
将代入,得:,
将,代入,
解得:;
(2)对于,令,得:,
∴点的坐标为,
∴.
本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用,解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合。
26、(1)y=x,见解析;y=2x-3,见解析;(2)(3,3);(3)见解析.
【解析】
(1)把当k=1,k=2时,分别代入求一次函数的解析式即可,
(2)利用k(x-3)=y-3,可得无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)先求出直线y=kx+k-2(k≠0)无论k取何值,总过点(-1,-2),再确定矩形对角线的交点即可画出直线.
【详解】
(1)当k=1时,直线l1的解析式为:y=x,
当k=2时,直线l2的解析式为y=2x-3,
如图1,
(2)∵y=kx+3(1-k),
∴k(x-3)=y-3,
∴无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)如图2,
∵直线y=kx+k-2(k≠0)
∴k(x+1)=y+2,
∴(k≠0)无论k取何值,总过点(-1,-2),
找出对角线的交点(1,1),通过两点的直线平分矩形ABCD的面积.
本题主要考查了一次函数综合题,涉及一次函数解析式及求点的坐标,矩形的性质,解题的关键是确定k(x+1)=y+2,无论k取何值(k≠0),总过点(-1,-2).
题号
一
二
三
四
五
总分
得分
批阅人
成绩(m)
1.45
1.50
1.55
1.60
1.65
1.70
人数
3
4
3
2
3
1
相关试卷
这是一份2024-2025学年江西省南昌市数学九年级第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江西省吉安八中学九上数学开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省丹阳市九年级数学第一学期开学达标测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。