2024-2025学年辽宁省灯塔市九年级数学第一学期开学学业水平测试试题【含答案】
展开
这是一份2024-2025学年辽宁省灯塔市九年级数学第一学期开学学业水平测试试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:
①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4 ,其中正确的结论个数有()
A.2个B.4个C.3个D.5个
2、(4分)有下列的判断:
①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形
②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形
③如果△ABC 是直角三角形,那么a2+b2=c2
以下说法正确的是( )
A.①② B.②③ C.①③ D.②
3、(4分)的算术平方根是( )
A.B.﹣C.D.±
4、(4分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为( )
A.8B.20C.8或20D.10
5、(4分)如图,在中,和的平分线相交于点,过点作交于点,交于点,过点作于点,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )
A.B.点到各边的距离相等
C.D.设,,则
6、(4分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区 户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是( )
A.极差是 B.众数是 C.中位数是 D.平均数是
7、(4分)如图,在中,,,点为上一点,,于点,点 为的中点,连接,则的长为( )
A.5B.4C.3D.2
8、(4分) “垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
10、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
11、(4分)如图,菱形由6个腰长为2,且全等的等腰梯形镶嵌而成,则菱形的对角线的长为_____.
12、(4分)如图,在中,点分别在上,且,,则___________
13、(4分)如图:在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B2018的坐标是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数的图象经过点A ,B 两点.
(1)求这个一次函数的解析式;
(2)求一次函数的图像与两坐标轴所围成的三角形的面积.
15、(8分)如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.
(1)求证:CE为⊙O的切线;
(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)
16、(8分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.
(1)求证:AE=BF;
(2)当∠BAG=30°,且AB=2时,求EF-FG的值.
17、(10分)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F
(1)求证:四边形AECF是平行四边形;
(2)如图2,当EF⊥AC时,求EF的长度.
18、(10分)如图,在平面直角坐标系中,各顶点的坐标分别为
(1)作出关于原点成中心对称的.
(2)作出点关于轴的对称点若把点向右平移个单位长度后,落在的内部(不包括顶点和边界),的取值范围,
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)
如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.
20、(4分)已知是分式方程的根,那么实数的值是__________.
21、(4分)如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为16,则▱ABCD的两条对角线的和是______
22、(4分)将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.
23、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,过矩形的顶点作,交的延长线于点
求证:
若°,求的周长.
25、(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,
(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
①如图1,求证:BE=BF=3;
②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为 (直接写出结果).
26、(12分)(1)如图1,在矩形中,对角线与相交于点,过点作直线,且交于点,交于点,连接,且平分.
①求证:四边形是菱形;
②直接写出的度数;
(2)把(1)中菱形进行分离研究,如图2,分别在边上,且,连接为的中点,连接,并延长交于点,连接.试探究线段与之间满足的关系,并说明理由;
(3)把(1)中矩形进行特殊化探究,如图3,矩形满足时,点是对角线上一点,连接,作,垂足为点,交于点,连接,交于点.请直接写出线段三者之间满足的数量关系.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;
在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;
要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;
当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.
【详解】
∵四边形ABCD是正方形,
∴∠GAD=∠ADO=45°.
由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确;
∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE<AB,
∴>2.故②错误;
∵∠AOB=90°,
∴AG=FG>OG.
∵△AGD与△OGD同高,
∴S△AGD>S△OGD.故③错误;
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE.
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF.
∵AE=EF,
∴AE=GF.
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四边形AEFG是菱形,故④正确;
∵四边形AEFG是菱形,
∴∠OGF=∠OAB=45°,
∴EF=GF=OG,
∴BE=EF=×OG=2OG.故⑤正确;
∵四边形AEFG是菱形,
∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,
∴△OGF是等腰直角三角形.
∵S△OGF=1,
∴ OG=1,
解得OG=,
∴BE=2OG=2,
GF=,
∴AE=GF=2,
∴AB=BE+AE=2+2,
∴S四边形ABCD=AB =(2 +2) =12+8 .故⑥错误.
∴其中正确结论的序号是①④⑤,共3个.
故选C.
此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理
2、D
【解析】【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.
【详解】①c不一定是斜边,故错误;
②正确;
③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,
所以正确的只有②,
故选D.
【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.
3、C
【解析】
直接利用算术平方根的定义得出答案.
【详解】
的算术平方根是:.
故选C.
此题主要考查了算术平方根,正确把握定义是解题关键.
4、B
【解析】
试题分析:解方程可得:y=2或y=5,当边长为2时,对角线为6就不成立;则边长为5,则周长为20.
考点:(1)、菱形的性质;(2)、方程的解
5、C
【解析】
利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.
【详解】
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O
∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°-∠A
∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A,故C错误;
∵∠EBO=∠CBO,∠FCO=∠BCO,
∴∠EBO=∠EOB,∠FCO=∠FOC,
∴BE=OE,CF=OF
∴EF=EO+OF=BE+CF,故A正确;
由已知,得点O是的内心,到各边的距离相等,故B正确;
作OM⊥AB,交AB于M,连接OA,如图所示:
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O
∴OM=
∴,故D选项正确;
故选:C.
此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用.
6、B
【解析】
试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:
A、极差=14﹣7=7,结论正确,故本选项错误;
B、众数为7,结论错误,故本选项正确;
C、中位数为8.5,结论正确,故本选项错误;
D、平均数是8,结论正确,故本选项错误.
故选B.
7、D
【解析】
利用三角形的中位线定理即可求答,先证明出E点为CD的中点,F点为AC的中点,证出EF为AC的中位线.
【详解】
因为BD=BC,BE⊥CD,
所以DE=CE,
又因为F为AC的中点,
所以EF为ΔACD的中位线,
因为AB=10,BC=BD=6,
所以AD=10-6=4,
所以EF=×4=2,
故选D
本题考查三角形的中位线等于第三边的一半,学生们要熟练掌握即可求出答案.
8、C
【解析】
根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.
【详解】
A选项,是轴对称图形,不符合题意;
B选项,是轴对称图形,不符合题意;
C选项,是中心对称图形,符合题意;
D选项,是轴对称图形,不符合题意;
故选:C.
此题主要考查对中心对称图形的理解,熟练掌握,即可解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、③
【解析】
分析: 根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.
详解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
故答案是:②.
点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:
①定义;②四边相等;③对角线互相垂直平分.
10、2
【解析】
分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
详解:∵点A的坐标为(2,4)且OA=AB,
∴O(0,0),B(4,0),C(6,-4),D(8,0),
2017÷8=252……1,
∴b==2.
点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
11、
【解析】
根据图形可知∠ADC=2∠A,又两邻角互补,所以可以求出菱形的锐角内角是60°;再根据AD=AB可以得出梯形的上底边长等于腰长,即可求出梯形的下底边长,所以菱形的边长可得,线段AC便不难求出.
【详解】
根据图形可知∠ADC=2∠A,又∠ADC+∠A=180°,
∴∠A=60°,
∵AB=AD,
∴梯形的上底边长=腰长=2,
∴梯形的下底边长=4(可以利用过上底顶点作腰的平行线得出),
∴AB=2+4=6,
∴AC=2ABsin60°=2×6×=6.
故答案为:6.
本题考查的是等腰梯形的性质,仔细观察图形得到角的关系和梯形的上底边长与腰的关系是解本题的关键.
12、
【解析】
根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.
【详解】
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴ ,
故答案为:.
此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
13、
【解析】
【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.
【详解】∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴B2018坐标(22018-1,22018-1).
故答案为
【点睛】本题考查一次函数图象上点的特征,正方形的性质等知识,解题的关键是学会从特殊到一般的探究方法,利用规律解决问题,属于中考填空题中的压轴题.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)4.
【解析】
(1)先利用待定系数法确定一次函数的解析式是y=2x-4;
(2)先确定直线y=2x-4与两坐标轴的交点坐标,然后根据三角形面积公式求解.
【详解】
解: (1)设这个一次函数的解析式为: y=kx+b(k≠0) .
将点A代入上式得:
解得
∴这个一次函数的解析式为:
(2) ∵
∴当y=0时,2x-4=0,则x=2
∴图象与x轴交于点C(2,0)
∴
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于把已知点代入解析式
15、(1)见解析;(2).
【解析】
(1)首先连接OE,由AC⊥AB,,可得∠CAD=90°,又由AC=EC,OA=OE,易证得∠CAE=∠CEA, ∠FAO=∠FEO,即可证得CD为⊙O的切线;
(2)根据题意可知∠OAF=30°,OF=1,可求得AE的长,又由S阴影= -,即可求得答案.
【详解】
(1)证明:连接OE
∵AC=EC,OA=OE
∴∠CAE=∠CEA, ∠FAO=∠FEO
∵AC⊥AB,
∴∠CAD=90°
∴∠CAE+∠EAO=90°
∴∠CEA+∠AEO=90°
即∠CEA=90°
∴OE⊥CD
∴CE为⊙O的切线
(2)解:
∵∠OAF=30°,OF=1
∴AO=2
∴AF= 即AE=
∴
∵∠AOE= 120°,AO=2
∴
∴S阴影=
此题考查垂径定理及其推论,切线的判定与性质,扇形面积的计算,解题关键在于作辅助线.
16、(1)证明见解析;(2)EF-FG=-1.
【解析】
分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;
(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.
详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.
又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.
∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;
(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.
∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.
点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.
17、(1)见解析;(2)EF=.
【解析】
(1)证明△AOF≌△COE全等,可得AF=EC,∵AF∥EC,∴四边形AECF是平行四边形;
(2)由(1)知四边形AECF是平行四边形,且EF⊥AC,∴四边形AECF为菱形,假设BE=a,根据勾股定理求出a,从而得知EF的长度;
【详解】
解:(1)∵矩形ABCD,∴AF∥EC,AO=CO
∴∠FAO=∠ECO
∴在△AOF和△COE中,,
∴△AOF≌△COE(ASA)
∴AF=EC
又∵AF∥EC
∴四边形AECF是平行四边形;
(2)由(1)知四边形AECF是平行四边形,
∵EF⊥AC,
∴四边形AECF为菱形,
设BE=a,则AE=EC=3-a
∴a2+22=(3-a)2
∴a=
则AE=EC=,
∵AB=2,BC=3,
∴AC==
∴AO=OC=,
∴OE===,
∴EF=2OF=.
此题考查平行四边形的判定,菱形的性质,勾股定理,全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.
18、(1)见解析;(2)见解析,
【解析】
(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)根据关于x轴对称的点的坐标特征写出C′坐标,则把点C'向右平移4个单位到C1位置,把点C'向右平移1个单位落在A1B1上,从而得到a的范围.
【详解】
解:(1)如图,△A1B1C1为所作;
(2)C′的坐标为(-2,-3),把点C'向右平移a个单位长度后落后在△A1B1C1的内部(不包括顶点和边界),则a的取值范围为:4<a<1.
本题考查了作图——旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据表格中的数据可以计算出小明家全年通话时间不超过5min的次数,本题得以解决.
【详解】
由题意可得,
小明家全年通话时间不超过5min约为:1000×=1(次),
故答案为:1.
本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
20、1
【解析】
将代入到方程中即可求出m的值.
【详解】
解:将代入,得
解得:
故答案为:1.
此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键.
21、1
【解析】
根据平行四边形对角线互相平分,对边相等可得CD=AB=5,AC=2CO,BD=2DO,再由△OCD的周长为16可得CO+DO=16﹣5=11,然后可得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=5,AC=2CO,BD=2DO,
∵△OCD的周长为16,
∴CO+DO=16﹣5=11,
∴AC+BD=2×11=1,
故答案为1.
此题主要考查了平行四边形的性质,关键是掌握平行四边形对角线互相平分,对边相等.
22、y=-4x-1
【解析】
根据函数图象的平移规律:上加下减,可得答案.
【详解】
解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.
故答案为:y=-4x-1.
本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.
23、4.
【解析】
先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.
【详解】
解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,
∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,
∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,
∴四边形EFGH是矩形,
边接AC,则AC=BD=4,
又∵EH是△ABD的中位线,
∴EH=BD=2,
同理EF=AC=2,
∴四边形EFGH的面积为2×2=4.
故答案为4.
本题考查了正方形的性质,矩形的判定,三角形中位线定理.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)
【解析】
(1)根据矩形的性质可证明四边形为平行四边形,继而得出,即可证明结论;
(2)根据直角三角形的性质计算得出AB、AC的值,即可得出的周长.
【详解】
解:证明:四边形为矩形.
四边形为平行四边形
由得
又,
,
.
本题考查的知识点是矩形的性质、平行四边形的判定及性质、勾股定理、等腰三角形的性质,解此题的关键是灵活运用矩形的性质、平行四边形的性质.
25、(1)①详见解析;②12;(2).
【解析】
(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;
②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;
(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.
【详解】
解:(1)①∵四边形ABCD是正方形,
∴AB=BC=AD=6,∠BAD=∠BCD=90°,
∵点E是中点,
∴AE=AD=3,
在Rt△ABE中,根据勾股定理得,BE==3,
在△BAE和△BCF中,
∴△BAE≌△BCF(SAS),
∴BE=BF,
∴BE=BF=3;
②如图2,连接BD,
在Rt△ABC中,AC=AB=6,
∴BD=6,
∵四边形ABCD是正方形,
∴AD∥BC,
∴△AEM∽△CMB,
∴,
∴,
∴AM=AC=2,
同理:CN=2,
∴MN=AC﹣AM﹣CN=2,
由①知,△ABE≌△CBF,
∴∠ABE=∠CBF,
∵AB=BC,∠BAM=∠BCN=45°,
∴△ABM≌△CBN,
∴BM=BN,
∵AC是正方形ABCD的对角线,
∴AB=AD,∠BAM=∠DAM=45°,
∵AM=AM,
∴△BAM≌△DAM,
∴BM=DM,
同理:BN=DN,
∴BM=DM=DN=BN,
∴四边形BMDN是菱形,
∴S四边形BMDN=BD×MN=×6×2=12;
(2)如图3,设DH=a,
连接BD,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵DH⊥BH,
∴∠BHD=90°,
∴点B,C,D,H四点共圆,
∴∠DBH=∠DCH=22.5°,
在BH上取一点G,使BG=DG,
∴∠DGH=2∠DBH=45°,
∴∠HDG=45°=∠HGD,
∴HG=HD=a,
在Rt△DHG中,DG=HD=a,
∴BG=a,
∴BH=BG+HG=A+A=(+1)a,
∴.
故答案为.
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.
26、 (1)①见解析;②60°;(1)见解析;(3)见解析.
【解析】
(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=1∠ADB,推出∠ADB=30°,即可解决问题;
(1)延长到,使得,连接,由菱形性质,,得,由此,由ASA可证得,由此,故
,由,可证得是等边三角形,可得,,由SAS可证,可得,即是等边三角形,
在中,由,,可得,由此可得;
(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形是矩形,
∴,
∴,
在和中,
,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴,
∴四边形是菱形.
②∵四边形是菱形,
∴,
∵平分,
∴,
∴=,
∵四边形是矩形,
∴A=,
∴+=,
∴==,
∴;
(1)结论:.
理由:如图1中,延长到,使得,连接.
∵四边形是菱形,,
∴,
∴,
在和中,
,
∴,
∴,
∴,
∴,
∵,
∴是等边三角形,
∴,
在和中,
,
∴,
∴,,
∵,
∴,
∵,
∴,
∴,
∴是等边三角形,
在中,∵,,
∴,
∴.
(3)结论:.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°,
∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°,
∴∠ADF+∠EDC=45°,
∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG,
在△DEM和△DEG中,
,
∴△DEG≌△DEM,
∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
∴∠ECM=90°,
∴EC1+CM1=EM1,
∵EG=EM,AG=CM,
∴GE1=AG1+CE1.
本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
相关试卷
这是一份2024-2025学年辽宁省辽阳市灯塔市数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省金陵中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南长沙北雅中学数学九年级第一学期开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。