年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年辽宁省抚顺市新宾县数学九年级第一学期开学复习检测试题【含答案】

    2024-2025学年辽宁省抚顺市新宾县数学九年级第一学期开学复习检测试题【含答案】第1页
    2024-2025学年辽宁省抚顺市新宾县数学九年级第一学期开学复习检测试题【含答案】第2页
    2024-2025学年辽宁省抚顺市新宾县数学九年级第一学期开学复习检测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年辽宁省抚顺市新宾县数学九年级第一学期开学复习检测试题【含答案】

    展开

    这是一份2024-2025学年辽宁省抚顺市新宾县数学九年级第一学期开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在▱ABCD中,对角线AC,BD交于点O,下列结论错误的是( )
    A.∠ABO=∠CDOB.∠BAD=∠BCD
    C.AB=CDD.AC⊥BD
    2、(4分)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
    A.B.C.D.
    3、(4分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )
    A.B.
    C.D.
    4、(4分)给出下列几组数:① 4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是( ).
    A.①② B.③④ C.①③④ D.④
    5、(4分)不等式6﹣4x≥3x﹣8的非负整数解为( )
    A.2个B.3个C.4个D.5个
    6、(4分)下列不等式的变形中,不正确的是( )
    A.若,则B.若,则
    C.若,则D.若,则
    7、(4分)如果代数式4x2+kx+25能够分解成(2x﹣5)2的形式,那么k的值是( )
    A.10B.﹣20C.±10D.±20
    8、(4分)如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,若BE=2,BF=3,▱ABCD的周长为20,则平行四边形的面积为( )
    A.12B.18C.20D.24
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算或化简
    (1) (2)
    10、(4分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.
    11、(4分)甲、乙两家人,相约周末前往中梁国际慢城度周末,甲、乙两家人分别从上桥和童家桥驾车同时出发,匀速前进,且甲途经童家桥,并以相同的线路前往中梁国际慢城. 已知乙的车速为30千米/小时,设两车之间的里程为y(千米),行驶时间为x(小时),图中的折线表示从两家人出发至甲先到达终点的过程中y(千米)与x(小时)的函数关系,根据图中信息,甲的车速为_______千米/小时.
    12、(4分)不等式的正整数解的和______;
    13、(4分)如图,正方形的边长为,点为边上一点,,点为的中点,过点作直线分别与,相交于点,.若,则长为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)分解因式:.
    15、(8分)八年级班一次数学测验,老师进行统计分析时,各分数段的人数如图所示(分数为整数,满分分).请观察图形,回答下列问题:
    (1)该班有____名学生:
    (2)请估算这次测验的平均成绩.
    16、(8分)如图,在平面直角坐标系xOy中,A(1,1),B(4,1),C(2,3).
    (1)在图中作出△ABC关于y轴的轴对称图形△A′B′C′;
    (2)在图中作出△ABC关于原点O中心对称图形△A"B"C".
    17、(10分)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.
    求证:(1)BC=AD;
    (2)△OAB是等腰三角形.
    18、(10分)已知:在中, ,为的中点, , ,垂足分别为点,且.求证:是等边三角形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)与向量相等的向量是__________.
    20、(4分)王明在计算一道方差题时写下了如下算式:,则其中的____________.
    21、(4分)若x、y为实数,且满足,则x+y的值是_________.
    22、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.
    23、(4分)如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,四边形ABCD是以坐标原点O为对称中心的矩形,,该矩形的边与坐标轴分别交于点E、F、G、H.
    直接写出点C和点D的坐标;
    求直线CD的解析式;
    判断点在矩形ABCD的内部还是外部,并说明理由.
    25、(10分)已知:如图,在□ABCD中,对角线AC,BD相交于点O,直线EF过点O,交DA于点E,交BC于点F.求证:OE=OF,AE=CF,DE=BF
    26、(12分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,对角相等;两直线平行,内错角相等;即可求得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,AB∥CD,∠BAD=∠BCD,
    ∴ ∠ABO=∠CDO.所以A、B、C正确.

    故选:D.
    本题考查平行四边形的性质.注意平行四边形的对边相等,对角相等,对角线互相平分定理的应用是解此题的关键.
    2、D
    【解析】
    根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.
    【详解】
    根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,
    A、,错误;
    B、,错误;
    C、,错误;
    D、,正确;
    故选D.
    本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.
    3、A
    【解析】
    根据配方法的步骤逐项分析即可.
    【详解】
    ∵x2+px+q=0,
    ∴x2+px=-q,
    ∴x2+px+=-q+,
    ∴.
    故选A.
    本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
    4、D
    【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+( 2mn)2=( m2+n2)2,且m>n>0,∴能组成直角三角形.
    故选D.
    点睛:本题关键在于勾股定理逆定理的运用.
    5、B
    【解析】
    移项得,﹣4x﹣3x≥﹣8﹣6,
    合并同类项得,﹣7x≥﹣14,
    系数化为1得,x≤1.
    故其非负整数解为:0,1,1,共3个.
    故选B.
    6、D
    【解析】
    根据不等式的基本性质进行判断。
    【详解】
    A. ∴,故A正确;
    B. ,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;
    C. ,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;
    D. ,在不等式两边同时除以(-3)则不等号改变,∴,故D错误
    所以,选项D不正确。
    主要考查了不等式的基本性质:
    1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;
    2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;
    3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。
    7、B
    【解析】
    把等式右边按照完全平方公式展开,利用左右对应项相等,即可求k的值.
    【详解】
    ∵代数式4x2+kx+25能够分解成(2x﹣5)2的形式,
    ∴4x2+kx+25=(2x﹣5)2=4x2﹣20x+25,
    ∴k=﹣20,
    故选:B.
    本题是完全平方公式的应用,两数的平方和,再减去它们积的2倍,就构成了一个完全平方式;熟练掌握完全平方公式是解题关键.
    8、A
    【解析】
    根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.
    【详解】
    解:∵▱ABCD的周长为20,
    ∴2(AD+CD)=20,
    ∴AD+CD=10①,
    ∵S▱ABCD=AD•BE=CD•BF,
    ∴2AD=3CD②,
    联立①、②解得AD=6,
    ∴▱ABCD的面积=AD•BE=6×2=1.
    故选:A.
    本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(1);
    【解析】
    (1)根据根式的计算法则计算即可.
    (2)采用平方差公式计算即可.
    【详解】
    (1)原式

    (2)原式
    本题主要考查根式的计算,这是必考题,应当熟练掌握.
    10、36°
    【解析】
    ∵多边形ABCDE是正五边形,
    ∴∠BAE==108°,
    ∴∠1=∠2=(180°-∠BAE),
    即2∠1=180°-108°,
    ∴∠1=36°.
    11、1
    【解析】
    根据题意和函数图象可知,甲小时行驶的路程=乙小时行驶的路程+10,从而可以求得甲的车速.
    【详解】
    解:由题意可得,
    甲的车速为:千米/小时,
    故答案为1.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    12、3.
    【解析】
    先解出一元一次不等式,然后选取正整数解,再求和即可.
    【详解】
    解:解得;x<3,;则正整数解有2和1;
    所以正整数解的和为3;故答案为3.
    本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.
    13、1或2
    【解析】
    根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.
    【详解】
    根据题意画出图形,过点作,交于点,交于点,四边形为正方形,.
    在中,,cm,
    cm.
    根据勾股定理得cm.
    为的中点,cm,
    在和中,

    ,.
    ,,
    ,即.
    在中,, cm.
    由对称性得到 cm,
    综上,等于1cm或2cm.
    故答案为:1或2.
    此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、.
    【解析】
    先提公因式(x-y),再运用平方差公式分解因式.
    【详解】




    本题考核知识点:因式分解.解题关键点:熟练掌握因式分解基本方法.
    15、(1)60 (2)61分
    【解析】
    (1)把各分数段的人数相加即可.
    (2)用总分数除以总人数即可求出平均分.
    【详解】
    (1)(名)
    故该班有60名学生.
    (2)(分)
    故这次测验的平均成绩为61分.
    本题考查了条形统计图的问题,掌握条形统计图的性质、平均数的算法是解题的关键.
    16、(1)答案见解析;(2)答案见解析.
    【解析】
    (1)在坐标轴中找出点A'(-1,1),B(-4,1),C'(-2,3),连线即可.
    (2)在坐标轴中找出点A" (-1,-1),B"(-4,-1), C"(-2,-3),连线即可.
    【详解】
    (1)△ABC关于y轴的轴对称图形△A′B′C′的坐标分别为A'(-1,1),B'(-4,1),C'(-2,3),
    在坐标轴中找出点,连线即可.

    (2)△ABC关于原点O中心对称图形△A"B"C"的坐标分别为A" (-1,-1),B"(-4,-1), C"(-2,-3),
    在坐标轴中找出点,连线即可.
    本题主要考查了坐标轴中图形的对称,正确掌握坐标轴中图形的对称图形的坐标是解题的关键.
    17、证明:(1)见解析
    (2)见解析
    【解析】
    (1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再由AC=BD,AB=BA,根据HL得出△ABC≌△BAD,即可证出BC=AD.
    (2)根据△ABC≌△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.
    【详解】
    证明:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,
    在△ABC和△BAD中,∵ AC="BD" ,AB=BA,∠ACB=∠BDA =90°,
    ∴△ABC≌△BAD(HL).∴BC=AD.
    (2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.
    ∴△OAB是等腰三角形.
    18、证明见解析.
    【解析】
    分析:由等腰三角形的性质得到∠B=∠C.再用HL证明Rt△ADE≌Rt△CDF,得到∠A=∠C,从而得到∠A=∠B=∠C,即可得到结论.
    详解:∵AB=AC, ∴∠B=∠C.
    ∵DE⊥AB, DF⊥BC,∴∠DEA=∠DFC=90°.
    ∵D为的AC中点,∴DA=DC.
    又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),
    ∴∠A=∠C,
    ∴∠A=∠B=∠C,
    ∴ΔABC是等边三角形.
    点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由于向量,所以.
    【详解】
    故答案为:
    此题考查向量的基本运算,解题关键在于掌握运算法则即可.
    20、1.865
    【解析】
    先计算出4个数据的平均数,再计算出方差即可.
    【详解】
    ∵,

    =
    =
    =
    =
    =1.865.
    故答案为:1.865.
    此题主要考查了方差的计算,求出平均数是解决此题的关键.
    21、1
    【解析】
    根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.
    【详解】
    根据题意得:,解得: , ∴x+y=1,
    故答案是:1.
    本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.
    22、1
    【解析】
    根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.
    【详解】
    解:∵D、E分别为AB、AC的中点,
    ∴DE=BC=2.5,
    ∵AF⊥CF,E为AC的中点,
    ∴EF=AC=1.5,
    ∴DF=DE﹣EF=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    23、
    【解析】
    过点A作于点E,根据菱形的性质可推出,过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,根据轴对称可得CH=2CG=2,根据两点之间线段最短的性质,PB+PC的最小值为BH的长,根据勾股定理计算即可;
    【详解】
    过点A作于点E,如图,
    ∵边长为4的菱形ABCD中,,
    ∴AB=AC=4,
    ∴在中,

    ∴,
    ∵,
    ∴,
    过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,如图,
    则,,
    ∴四边形CGPF是矩形,
    ∴CG=PF,
    ∵,
    ∴,
    ∴PF=1,
    ∴CG=PF=1,
    根据抽对称的性质可得,
    CG=GH,PH=PC,
    ∴CH=2CG=2,
    根据两点之间线段最短的性质,得,

    即,
    ∴PB+PC的最小值为BH的长,
    ∵,,
    ∴,
    ∴在中,

    ∴PB+PC的最小值为.
    故答案为:.
    本题主要考查了菱形的性质,准确分析轴对称的最短路线知识点是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1).,(2)直线CD的解析式的解析式为:;(3)点在矩形ABCD的外部.
    【解析】
    根据中心对称的性质即可解决问题;
    利用待定系数法求出直线CD的解析式;
    根据直线CD的解析式,判定点与直线CD的位置关系即可解决问题.
    【详解】
    、C关于原点对称,,

    、D关于原点对称,,

    设直线CD的解析式为:,
    把,代入得:,
    解得:,
    直线CD的解析式的解析式为:;
    :;
    时,,

    点在直线CD的下方,
    点在矩形ABCD的外部.
    本题考查了中心对称的性质、一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能求出一次函数的解析式是解此题的关键.
    25、证明见解析
    【解析】
    根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,AE=CF,DE=BF.
    【详解】
    证明:∵四边形ABCD是平行四边形,且对角线AC与BD相交于点O,AD∥BC,
    ∴OA=OC,∠EAO=∠FCO.
    又∵∠AOE=∠COF,∴△AOE≌△COF. ∴OE=OF,AE=CF.
    又∵AD=CB,∴DE=AD-AE=CB-CF=BF.
    本题考查平行四边形的性质,全等三角形的判定和性质,解题关键是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.
    26、6名.
    【解析】
    试题分析:首先设车间每天安排x名工人生产甲种产品,其余工人生产乙种产品,利用使此车间每天所获利润不低于15600元,得出不等关系进而求出即可.
    试题解析:设车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
    根据题意可得,12x×100+10(10-x)×180≥15600,
    解得;x≤4,
    ∴10-x≥6,
    ∴至少要派6名工人去生产乙种产品才合适.
    考点:一元一次不等式的应用.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年辽宁省抚顺市新抚区九年级数学第一学期开学监测试题【含答案】:

    这是一份2024-2025学年辽宁省抚顺市新抚区九年级数学第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年辽宁省抚顺市望花区数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2024-2025学年辽宁省抚顺市望花区数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】:

    这是一份2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map