2024-2025学年辽宁省沈阳市第八十七中学数学九年级第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列二次根式中,化简后能与合并的是
A.B.C.D.
2、(4分)在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
这些运动员跳高成绩的中位数和众数分别是( )
A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4
3、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( )
A.30°B.60°C.90°D.150°
4、(4分)如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( )
A.4B.3C.D.2
5、(4分)一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是( )
A.10B.11C.12D.15
6、(4分)某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:
则下列图象中,能表示y与x的函数关系的图象大致是( )
A.B.
C.D.
7、(4分)已知点和点在函数的图像上,则下列结论中正确的()
A.B.C.D.
8、(4分)某汽车制造厂为了使顾客了解一种新车的耗油量,公布了调查20辆该车每辆行驶100千米的耗油量,在这个问题中总体是( )
A.所有该种新车的100千米耗油量B.20辆该种新车的100千米耗油量
C.所有该种新车D.20辆汽车
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________.
10、(4分)如图,在平面直角坐标系中,菱形OABC的顶点O是原点,顶点B在y轴正半轴上,顶点A在第一象限,菱形的两条对角线长分别是8和6,函数y= (x<0)的图象经过点C,则k的值为________.
11、(4分)一次函数,若y随x的增大而增大,则的取值范围是 .
12、(4分)计算: =_____.
13、(4分)如图,直线y=x+1与坐标轴相交于A、B两点,在其图象上取一点A1,以O、A1为顶点作第一个等边三角形OA1B1,再在直线上取一点A2,以A2、B1为顶点作第二个等边三角形A2B1B2,…,一直这样作下去,则第10个等边三角形的边长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知△ABC中,DE∥BC,S△ADE︰S四边形BCED=1︰2,,试求DE的长.
15、(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).
小宇的作业:
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
甲、乙两人射箭成绩统计表
(1)a=________,乙=________;
(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中.
16、(8分)某商场购进一批运动服,销售时标价为每件100元,若按七折销售则可获利40%.为尽快减少库存,现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+10)件.
(1)运动服的进价是每件______元;
(2)促销期间,每天若要获得500元的利润,则x的值为多少?
17、(10分)如图,在中,分别平分和,交于点,线段相交于点M.
(1)求证:;
(2)若,则的值是__________.
18、(10分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)平面直角坐标系中,点A在函数 (x>0)的图象上,点B在 (x<0)的图象上,设A的横坐标为a,B的横坐标为b,当|a|=|b|=5时,求△OAB的面积为____;
20、(4分)如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.
21、(4分)二次根式有意义的条件是______________.
22、(4分)如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为________.
23、(4分)已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,AB=AD,CB=CD,AB ∥ CD.
(1)求证:四边形ABCD是菱形.
(2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件).
(3)对角线AC和BD交于点O,∠ ADC =120°,AC=8, P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出A P1的取值范围.
25、(10分)在课外活动中,我们要研究一种四边形--筝形的性质.
定义:两组邻边分别相等的四边形是筝形(如图1).
小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.
下面是小聪的探究过程,请补充完整:
(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 ;
(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;
(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.
26、(12分)如图,的对角线,相交于点,,是上的两点,并且,连接,.
(1)求证;
(2)若,连接,,判断四边形的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答.
【详解】
、,不能与合并,故本选项错误;
、,能与合并,故本选项正确;
、,不能与合并,故本选项错误;
、,不能与合并,故本选项错误.
故选.
本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
2、A
【解析】
根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.
【详解】
将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,,1.1,1.1,1.75,1.75,1.75,1.80,1.80,
众数为:1.65;
中位数为:1.1.
故选:A.
本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.
3、B
【解析】
根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.
【详解】
∵∠ACB=90°,∠ABC=30°,
∴∠A=90°-30°=60°,
∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
∴AC=A′C,
∴△A′AC是等边三角形,
∴∠ACA′=60°,
∴旋转角为60°.
故选:B.
本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.
4、B
【解析】
根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=DC,AD∥BC,
∴∠DEC=∠BCE,
∵CE平分∠DCB,
∴∠DCE=∠BCE,
∴∠DEC=∠DCE,
∴DE=DC=AB,
∵AD=2AB=2CD,CD=DE,
∴AD=2DE,
∴AE=DE=3,
∴DC=AB=DE=3,
故选B.
本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.
5、A
【解析】
首先根据频数=总数×频率,求得第五组频数;
再根据各组的频数和等于总数,求得第六组的频数:根据题意,得
第五组频数是50×0.2=1,
故第六组的频数是50-5-7-8-1-1=1.
故选A.
6、B
【解析】
通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.
【详解】
解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=kx+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.
此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.
7、B
【解析】
根据一次函数的增减性可判断m、n的大小.
【详解】
∵一次函数的比例系数为0
∴一次函数y随着x的增大而增大
∵-1<1
∴m<n
故选:B
本题考查一次函数的增减性,解题关键是通过一次函数的比例系数判定y随x的变化情况.
8、A
【解析】
首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:在这个问题中总体是:所有该种新车的100千米耗油量;
样本是:20辆该种新车的100千米耗油量;
样本容量为:20
个体为:每辆该种新车的100千米耗油量;
故选:A.
本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4或或
【解析】
分三种情况进行讨论:(1)△AEF为等腰直角三角形,得出AE上的高为AF=4;
(2)利用勾股定理求出AE边上的高BF即可;
(3)求出AE边上的高DF即可
【详解】
解:分三种情况:
(1)当AE=AF=4时,
如图1所示:
△AEF的腰AE上的高为AF=4;
(2)当AE=EF=4时,
如图2所示:
则BE=5-4=1,
BF=;
(3)当AE=EF=4时,
如图3所示:
则DE=7-4=3,
DF=,
故答案为4或或.
本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.
10、-12.
【解析】
根据题意可得点C的坐标为(-4,3),将点C的坐标代入y= 中求得k值即可.
【详解】
根据题意可得点C的坐标为(-4,3),
将点C的坐标代入y= 中,得,
3=,
解得 k=-12.
故答案为:-12.
本题考查了菱形的性质及求反比例函数的解析式,求得点C的坐标为(-4,3)是解决问题的关键.
11、.
【解析】
一次函数的图象有两种情况:
①当时,函数的值随x的值增大而增大;
②当时,函数的值随x的值增大而减小.
由题意得,函数的y随x的增大而增大,.
12、
【解析】
=
13、
【解析】
作A1D⊥x轴于D,A2E⊥x轴于E,根据等边三角形的性质得OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,设OD=t,B1E=a,则A1D=t,A2E=a,则A1点坐标为(t, t),把A1的坐标代入y=x+1,可解得t=,于是得到B1点的坐标为(,0),OB1=,则A2点坐标为(+a, a),然后把A2的坐标代入y=x+1可解得a=,B1B2=2,同理得到B2B3=4,…,按照此规律得到B9B10=29•.
【详解】
解:作A1D⊥x轴于D,A2E⊥x轴于E,如图,
∵△OA1B1、△B1A2B2均为等边三角形,
∴OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,
设OD=t,B1E=a,则A1D=t,A2E=a,
∴A1点坐标为(t, t),
把A1(t, t)代入y=x+1,得t=t+1,解得t=,
∴OB1=,
∴A2点坐标为(+a, a),
把A2(+a, a)代入y=x+1,得a=(+a)+1,解得a=,
∴B1B2=2,
同理得到B2B3=22•,
…,
按照此规律得到B9B10=29•.
故选答案为29•.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等边三角形的性质.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
解:因为DE∥BC,
所以△ADE∽△ABC,
所以.
又S△ADE︰S四边形BCED=1︰2,
所以S△ADE︰S△ABC=1︰3,
即.而,所以.
15、(1)4 6 (2)见解析 (3)①乙 1.6,判断见解析 ②乙,理由见解析
【解析】
解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,
则a=30-7-7-5-7=4,
乙=30÷5=6,
所以答案为:4,6;
(2)如图所示:
(3)①观察图,可看出乙的成绩比较稳定,所以答案为:乙;
s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6
由于s乙2<s甲2,所以上述判断正确.
②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.
16、(1)52;(2)x的值为3.5或1.
【解析】
(1)设进价为a元,根据“销售时标价为每件12元,若按七折销售则可获利42%.”列出方程,求出方程的解即可得到结果;
(2)根据“现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+1)件列出方程”,列出利润522=(32-x-52)(4x+1),求出方程的解即可得到结果.
【详解】
解:(1)设进价为a元,
根据题意得:(1+42%)a=12×2.3,
解得:a=52,
则运动服的进价是每件52元;
故答案为:52;
(2)根据题意得:(32-x-52)(4x+1)=522,
(22-x)(2x+5)=252,即2x2-35x+152=2,
分解因式得:(2x-15)(x-1)=2,
解得:x=3.5或x=1,
则x的值为3.5或1.
此题考查一元二次方程的应用,弄清题意再根据题意列出方程是解题的关键.
17、(1)略;(2);
【解析】
(1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
(2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
【详解】
(1)证明:∵在平行四边形ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°,
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF,
∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
∴∠AMB=10°,
∴AE⊥BF;
(2)解:∵在平行四边形ABCD中,CD∥AB,
∴∠DEA=∠EAB,
又∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DEA=∠DAE,
∴DE=AD,同理可得,CF=BC,
又∵在平行四边形ABCD中,AD=BC,
∴DE=CF,
∴DF=CE,
∵EF=AD,
∴BC=AD=5EF,
∴DE=5EF,
∴DF=CE=4EF,
∴AB=CD=1EF,
∴BC:AB=5:1;
故答案为5:1.
本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
18、小明至少答对18道题才能获得奖品.
【解析】
试题分析:设小明答对x道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可.
试题解析:
设小明答对x道题,根据题意得,
6x-2(25-x)>90
解这个不等式得,,
∵x为非负整数
∴x至少为18
答:小明至少答对18道题才能获得奖品.
考点:一元一次不等式的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据已知条件可以得到点A、B的横坐标,则由反比例函数图象上点的坐标特征易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;
【详解】
)∵a>0,b<0,当|a|=|b|=5时,
可得A(5, ),B(−5, ),
∴S△OAB=×10×=2;
此题考查反比例函数,解题关键在于得到点A、B的横坐标
20、
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=3x+b.
把(0,1)代入直线解析式得1=b,
解得 b=1.
所以平移后直线的解析式为y=3x+1.
故答案为:y=3x+1.
本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
21、x≥1
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
由题意得,x−1⩾0,
解得x⩾1.
故答案为:x⩾1.
此题考查二次根式有意义的条件,解题关键在于掌握被开方数大于等于0
22、
【解析】
过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.
【详解】
过A点作A⊥BD于F,
∵∠DBC=90°,
∴AF∥BC,
∵CE=2AE,
∴AF=BC,
∵∠ABD=30°,
∴AF=AB,
∴BC=AB,
∵∠ABD=30°,∠ADB=75°,
∴∠BAD=75°,∠ACB=30°,
∴∠ADB=∠BAD,
∴BD=AB,
∴BC=BD,
∵CE=4,
在Rt△CBE中,BC=CE=6,
在Rt△CBD中,CD=BC=6.
故答案为:6.
此题考查了含30度直角三角形的性质,以及等腰三角形的判定和性质,得到Rt△CBE是含30度直角三角形,以及Rt△CBD是等腰直角三角形是解本题的关键.
23、1.
【解析】
连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.
【详解】
如图所示:连接BD.
∵E,F分别是AB,AD的中点,EF=5,
∴BD=2EF=1.
∵ABCD为矩形,
∴AC=BD=1.
故答案为:1.
本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)见解析;(3) .
【解析】
分析:(1)先证明四边形ABCD是平行四边形,然后证明它是菱形即可.
(2)由(1)已知四边形ABCD是菱形,所以当△ABD是直角三角形时,四边形ABCD是正方形.
(3)将线段AC顺时针方向旋转60°得到线段CE,并连接AE,点到直线的距离垂线段最短,所以AP1垂直CE时,AP1取最小值,点P1在E点,AP1取最大值,即可求解.
详解:证明:(1) AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,
∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,
∴AD∥BC,∴四边形ABCD是平行四边形.
又∵AB=AD,∴四边形ABCD是菱形.
(2)要使四边形ABCD是正方形,则∠A=∠ABC=∠C=∠ADC=90°,
∴当△ABD是直角三角形时,即∠BAD=90°时,四边形ABCD是正方形;
(3)以点C为中心,将线段AC顺时针方向旋转60°得到线段CE,由题意可知,点P1在线段CE上运动.
连接AE,
∵AC=CE,∠ACE=60°,∴△ACE为等边三角形,
∴AC=CE=AE=8,过点A作于点F,
∴.当点P1在点F时,线段AP1最短,此时;.
当点P1在点E时,线段AP1最长,此时AP1=8,
..
点睛:本题主要考查了菱形的判定和正方形的判定,结合题意认真分析是解题的关键.
25、(1)菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.证明见解析;(3)4.
【解析】
(1)根据筝形的定义解答即可;
(2)根据全等三角形的判定和性质证明;
(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.
【详解】
(1)∵菱形的四条边相等,
∴菱形是筝形,
故答案为:菱形;
(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.
已知:四边形ABCD是筝形,
求证:∠B=∠D,
证明:如图1,连接AC,
在△ABC和△ADC中,
,
∴△ABC≌△ADC,
∴∠B=∠D;
(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,
∵∠ABC=120°,
∴∠EBC=60°,又BC=2,
∴CE=BC×sin∠EBC=,
∴S△ABC=×AB×CE=2,
∵△ABC≌△ADC,
∴筝形ABCD的面积=2S△ABC=4.
本题考查的是筝形的定义和性质、菱形的性质、全等三角形的判定和性质,正确理解筝形的性质、熟记锐角三角函数的定义是解题的关键.
26、(1)详见解析;(2)四边形BEDF是矩形,理由详见解析.
【解析】
(1)已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=OC,OB=OD,由AE=CF即可得OE=OF,利用SAS证明△BOE≌△DOF, 根据全等三角形的性质即可得BE=DF;(2)四边形BEDF是矩形.由(1)得OD=OB,OE=OF, 根据对角线互相平方的四边形为平行四边形可得四边形BEDF是平行四边形, 再由BD=EF,根据对角线相等的平行四边形为矩形即可判定四边形EBFD是矩形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OE=OF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(SAS),
∴BE=DF;
(2)四边形BEDF是矩形.理由如下:
如图所示:
∵OD=OB,OE=OF,
∴四边形BEDF是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
本题考查了平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.
题号
一
二
三
四
五
总分
得分
成绩(m)
1.50
1.60
1.65
1.70
1.75
1.80
人数
1
2
4
3
3
2
砝码的质量x/g
0
50
100
150
200
250
300
400
500
指针位置y/cm
2
3
4
5
6
7
7.5
7.5
7.5
第1次
第2次
第3次
第4次
第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
2024-2025学年辽宁省沈阳市法库县九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市法库县九年级数学第一学期开学检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年辽宁省沈阳市第一四三中学数学九上开学教学质量检测试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市第一四三中学数学九上开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年辽宁省沈阳市第三十八中学数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市第三十八中学数学九年级第一学期开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。