|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年内蒙古巴彦淖尔市名校九年级数学第一学期开学复习检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年内蒙古巴彦淖尔市名校九年级数学第一学期开学复习检测试题【含答案】01
    2024-2025学年内蒙古巴彦淖尔市名校九年级数学第一学期开学复习检测试题【含答案】02
    2024-2025学年内蒙古巴彦淖尔市名校九年级数学第一学期开学复习检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年内蒙古巴彦淖尔市名校九年级数学第一学期开学复习检测试题【含答案】

    展开
    这是一份2024-2025学年内蒙古巴彦淖尔市名校九年级数学第一学期开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若x>y,则下列式子错误的是( )
    A.x﹣3>y﹣3B.﹣3x>﹣3yC.x+3>y+3D.
    2、(4分)下列各组数据中能作为直角三角形的三边长的是( )
    A.1,2,2B.C.13,14,15D.6,8,10
    3、(4分)如图,在中,,,,是边上的动点,,,则的最小值为( )
    A.B.C.5D.7
    4、(4分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
    A.点CB.点OC.点ED.点F
    5、(4分)如图,点O是AC的中点,将面积为4cm2的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则图中阴影部分的面积是( )
    A.1cm2B.2cm2C.3cm2D.4cm2
    6、(4分)平行四边形所具有的性质是( )
    A.对角线相等
    B.邻边互相垂直
    C.每条对角线平分一组对角
    D.两组对边分别相等
    7、(4分)下列二次根式中,是最简二次根式的是( ).
    A.B.C.D.
    8、(4分)在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积,当高h为定值时,下列说法正确的是( )
    A.S,a是变量;,h是常量
    B.S,a,h是变量;是常量
    C.a,h是变量;S是常量
    D.S是变量;,a,h是常量
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,已知OA=4,则点A的坐标为____________,直线OA的解析式为______________.
    10、(4分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.
    11、(4分)已知点A(,)、B(,)在直线上,且直线经过第一、三、四象限,当时,与的大小关系为____.
    12、(4分)如果一次函数的图像经过点和,那么函数值随着自变量的增大而__________.(填“增大”或“不变”或“减小”)
    13、(4分)已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
    (1)证明四边形ADCF是菱形;
    (2)若AC=4,AB=5,求菱形ADCF的面积.
    15、(8分)已知平面直角坐标系中有一点(,).
    (1)若点在第四象限,求的取值范围;
    (2)若点到轴的距离为3,求点的坐标.
    16、(8分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.
    17、(10分)如图1,在△ABC中,AB=BC=5,AC=6,△ABC沿BC方向向右平移得△DCE,A、C对应点分别是D、E.AC与BD相交于点O.
    (1)将射线BD绕B点顺时针旋转,且与DC,DE分别相交于F,G,CH∥BG交DE于H,当DF=CF时,求DG的长;
    (2)如图2,将直线BD绕点O逆时针旋转,与线段AD,BC分别相交于点Q,P.设OQ=x,四边形ABPQ的周长为y,求y与x之间的函数关系式,并求y的最小值.
    (3)在(2)中PQ的旋转过程中,△AOQ是否构成等腰三角形?若能构成等腰三角形,求出此时PQ的长?若不能,请说明理由.
    18、(10分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.
    (1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.
    (2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) 已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.
    20、(4分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款___元,购买4千克“黄金1号”玉米种子需___元.
    21、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.
    22、(4分)若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________
    23、(4分)一次函数y=﹣2x+6的图象与x轴的交点坐标是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.
    25、(10分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.
    求证:.
    26、(12分)某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:
    (1)根据图示填写下表
    (2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
    (3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
    A、不等式两边都减3,不等号的方向不变,正确;
    B、乘以一个负数,不等号的方向改变,错误;
    C、不等式两边都加3,不等号的方向不变,正确;
    D、不等式两边都除以一个正数,不等号的方向不变,正确.
    故选B.
    2、D
    【解析】
    根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.
    【详解】
    解:A、,不能构成直角三角形,故不符合题意;
    B、,不能构成直角三角形,故不符合题意;
    C、,不能构成直角三角形,故不符合题意;
    D、,能构成直角三角形,故符合题意.
    故选:D.
    本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
    3、B
    【解析】
    先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.
    【详解】
    如图,连接PC.
    ∵在△ABC中,AC=6,BC=8,AB=10,
    ∴AB2=AC2+BC2,
    ∴∠C=90°.
    又∵PE⊥AC于点E,PF⊥BC于点F.
    ∴∠CEP=∠CFP=90°,
    ∴四边形PECF是矩形.
    ∴PC=EF.
    ∴当PC最小时,EF也最小,
    即当PC⊥AB时,PC最小,
    ∵BC•AC=AB•PC,即PC=,
    ∴线段EF长的最小值为.
    故选B.
    本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.
    4、B
    【解析】
    从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.
    【详解】
    解:∵AB=2,BC=4,四边形ABCD是矩形,
    ∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
    ∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.
    故选:B.
    本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.
    5、A
    【解析】
    根据题意得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的面积是▱ABCD面积的.
    【详解】
    由平移的性质得,▱ABCD∽▱OECF,且AO=OC=AC,
    故四边形OECF的面积是▱ABCD面积的.,
    即图中阴影部分的面积为1cm1.
    故选A.
    此题主要考查学生对菱形的性质及平移的性质的综合运用.关键是得出四边形OECF的面积是▱ABCD面积的.
    6、D
    【解析】
    根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.
    【详解】
    平行四边形的对角相等,对角线互相平分,对边平行且相等.
    故选D.
    此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.
    7、A
    【解析】
    检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故正确;
    B、=0,故错误;
    C、=1,故错误;
    D、=3,故错误;
    故选:A.
    考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    8、A
    【解析】
    因为高h为定值,所以h是不变的量,即h是常量,所以S,a是变量,,h是常量.
    故选A.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、 (2,2), y=
    【解析】
    分析:根据锐角三角函数即可求出点A的坐标,把点A坐标代入直线OA的解析式可直接求出其解析式.
    详解:如图:过A点作x轴,y轴的垂线,交于点B,C.
    ∵OA=4,且∠AOC=30°,
    ∴AC=2,OC=2.
    ∴点A(2).
    设直线OA的解析式为y=kx,
    ∵点A(2,2),
    ∴k=,
    ∴直线OA的解析式:y=x.
    点睛:本题主要考查了锐角三角函数的定义,难点在于用待定系数法求正比例函数解析式.
    10、1
    【解析】
    根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
    【详解】
    解:∵△ABC中,AB=AC,
    ∴∠B=∠C,
    ∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,
    ∴∠A:∠B=1:2,
    即5∠A=180°,
    ∴∠A=1°,
    故答案为1.
    本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.
    11、
    【解析】
    根据直线经过第一、三、四象限得到k>0,再根据图像即可求解.
    【详解】
    ∵直线经过第一、三、四象限
    ∴k>0,∴y随x的增大而增大,
    ∵,∴
    故填:.
    此题主要考查一次函数图像,解题的关键是熟知一次函数的图像与性质.
    12、增大
    【解析】
    根据一次函数的单调性可直接得出答案.
    【详解】
    当时,;当时,,
    ∵ ,
    ∴函数值随着自变量的增大而增大,
    故答案为:增大.
    本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键.
    13、x<1
    【解析】
    利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.
    【详解】
    解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;
    故答案为:x<1
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    (1)证明:如图,∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,AD是BC边上的中线,
    ∴AE=DE,BD=CD,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    ∴AF=DB.
    ∵DB=DC,
    ∴AF=CD,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (2)解:连接DF,
    ∵AF∥BC,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S=AC•DF=1.
    【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.
    15、 (1) -<m<3;(1) 点P的坐标为(3,﹣1)或(﹣3,-5)
    【解析】
    (1)根据题意得出1m+1>0,m-3<0,解答即可;
    (1)根据题意可知1m+1的绝对值等于3,从而可以得到m的值,进而得到P的坐标.
    【详解】
    (1)由题意可得:1m+1>0,m-3<0,解得:﹣<m<3;
    (1)由题意可得:|1m+1|=3,解得:m=1或m=﹣1.
    当m=1时,点P的坐标为(3,-1);
    当m=﹣1时,点P的坐标为(﹣3,-5).
    综上所述:点P的坐标为(3,﹣1)或(﹣3,-5).
    本题考查了点的坐标,解题的关键是明确题意,求出m的值.
    16、4
    【解析】
    首先由S矩形ABCD=3S△PAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
    【详解】
    设△ABP中AB边上的高是h.
    ∵S矩形ABCD=3S△PAB,
    ∴AB•h=AB•AD,
    ∴h= AD=2,
    ∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
    在Rt△ABE中,∵AB=4,AE=2+2=4,
    ∴BE=,
    即PA+PB的最小值为4.
    故答案为:4.
    本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
    17、(1)1;(1)y=1x+10(≤x≤4),当x=时,y有最小值,最小值为;(3)能,满足条件的PQ的值为:或2或3.
    【解析】
    (1)证明DG=GH=EH即可解决问题.
    (1)如图1中,作AH⊥BC于H.解直角三角形求出AH,可得OQ的最小值,证明△AOQ≌△COP(ASA),推出AQ=PC,推出y=AQ+AB+BP+PC+PQ=AB+BC+PQ=10+1x(≤x≤4).根据一次函数的性质求出最值即可.
    (3)分三种情形:①当AQ=AO=3时,作OH⊥AD于H.②当点Q是AD的中点时.③当OA=OQ=3时,分别求解即可.
    【详解】
    解:(1)如图中,
    ∵DF=FC,CH∥FG,
    ∴DG=GH,
    ∵BC=CE,CH∥BG,
    ∴GH=HE,
    ∴DG=GH=HE,
    ∴DG=DE=AC=1.
    (1)如图1中,作AH⊥BC于H.
    ∵AB∥CD,AB=CD,
    ∴四边形ABCD是平行四边形,
    ∵AB=BC,
    ∴四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴OA=OC=3,OB=OD==4,
    ∴,
    ∴AH=,
    ∵AQ∥PC,
    ∴∠QAO=∠PCO,
    ∵OA=OC,∠AOQ=∠COP,
    ∴△AOQ≌△COP(ASA),
    ∴AQ=PC,
    ∴y=AQ+AB+BP+PC+PQ=AB+BC+PQ=10+1x(≤x≤4).
    ∴y=1x+10(≤x≤4).
    当x=时,y有最小值,最小值为.
    (3)能;
    如图3中,
    分三种情形:①当AQ=AO=3时,作OH⊥AD于H.
    易知OH=,
    ∴AH==,
    ∴HQ=,
    ∴OQ=,
    ∴PQ=1OQ=.
    ②当点Q是AD的中点时,AQ=OQ=DQ=,
    ∴PQ=1OQ=2.
    ③当OA=OQ=3时,PQ=1OQ=3.
    综上所述,满足条件的PQ的值为:或2或3.
    本题属于四边形综合题,考查了平移变换,菱形的判定和性质,解直角三角形,等腰三角形的判定和性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.
    18、(2)详见解析(2)CF=
    【解析】
    (2)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证.
    (2)与(2)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式计算即可求出AD.
    【详解】
    解:(2)AD=CF.理由如下:
    在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,
    ∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF.
    在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,
    ∴△AOD≌△COF(SAS).
    ∴AD=CF.
    (2)与(2)同理求出CF=AD,
    如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,
    ∵正方形ODEF的边长为,∴OE=×=2.
    ∴DG=OG=OE=×2=2.
    ∴AG=AO+OG=3+2=4,
    在Rt△ADG中,,
    ∴CF=AD=.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3或7
    【解析】
    分两种情况:
    (1)当AE交BC于点E时;
    在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC
    ∴∠AEB=∠EAD,
    ∵∠DAB的平分线交BC于E,
    ∴∠AEB=∠BAE,
    ∴∠AEB=∠BAE,∴AB=BE,
    设AD=x,z则BE=x-2=5
    ∴AD=5+2=7cm,
    (2) 当AE交BC于点E,交CD于点F
    ∵ABCD为平行四边形,
    ∴AB=DC=5cm,AD=BC,AD∥BC.
    ∴∠E=∠EAD,
    又∵BE平分∠BAD,
    ∴∠EAD=∠EAB,
    ∴∠EAB=∠E,
    ∴BC+CE=AB=5,
    ∴AD=BC=5−2=3(cm).故答案为3或7
    点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.
    20、5 1.
    【解析】
    由图象可求出当0≤x≤2时,y与x的函数关系式为y=5x,当x>2时,y与x的函数关系式为y=4x+2,然后根据所求解析式分别求出当x=1和x=4时y的值即可.
    【详解】
    解:当0≤x≤2时,设y与x的函数关系式为y=kx,
    2k=10,得k=5,
    ∴当0≤x≤2时,y与x的函数关系式为y=5x,
    当x=1时,y=5×1=5,
    当x>2时,设y与x的函数关系式为y=ax+b,
    ,得 ,
    即当x>2时,y与x的函数关系式为y=4x+2,
    当x=4时,y=4×4+2=1,
    故答案为:5,1.
    一次函数在实际生活中的应用是本题的考点,根据图象求出函数解析式是解题的关键.
    21、1
    【解析】
    根据勾股定理计算即可.
    【详解】
    解:最大的正方形的面积为1,
    由勾股定理得,正方形E、F的面积之和为1,
    ∴正方形A、B、C、D的面积之和为1,
    故答案为1.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    22、
    【解析】
    根据∆>0列式求解即可.
    【详解】
    由题意得
    4-8m>0,
    ∴.
    故答案为:.
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    23、(3,0)
    【解析】
    y=0,即可求出x的值,即可求解.
    【详解】
    解:当y=0时,有﹣2x+6=0,
    解得:x=3,
    ∴一次函数y=﹣2x+6的图象与x轴的交点坐标是(3,0).
    故答案为:(3,0).
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
    二、解答题(本大题共3个小题,共30分)
    24、如图,连接EG,DG.
    ∵CE是AB边上的高,
    ∴CE⊥AB.
    在Rt△CEB中,G是BC的中点,∴.
    同理,.∴EG=DG.
    又∵F是ED的中点,∴FG⊥DE.
    【解析】
    根据题意连接EG,DG,利用直角三角形斜边上的中线的性质可得EG=DG,然后根据等腰三角形“三线合一”的性质即可解决.
    25、证明见解析
    【解析】
    根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:
    ,在和中,由,可判定≌,根据全等三角形的性质可得:.
    【详解】
    证明:于F点,于G点,
    ,
    四边形ABCD是正方形,
    ,
    ,
    又,
    ,
    在和中,
    ,
    ≌,
    ,
    本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.
    26、(1)85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定.
    【解析】
    (1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
    (2)在平均数相同的情况下,中位数高的成绩较好;
    (3)根据方差公式计算即可:S2=(可简单记忆为“等于差方的平均数”)
    【详解】
    解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100,
    二班5名选手的复赛成绩为:70、100、100、75、80,
    一班的众数为85,
    一班的平均数为(75+80+85+85+100)÷5=85,
    二班的中位数是80;
    故填: 85、85 80
    (2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)
    (3)S二班2=
    因为S一班2=70则S一班2<S二班2,因此一班成绩较为稳定.
    本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.
    题号





    总分
    得分
    批阅人
    班级
    中位数(分)
    众数(分)
    平均数(分)
    一班
    85
    二班
    100
    85
    班级
    中位数(分)
    众数(分)
    平均数(分)
    一班
    85
    85
    85
    二班
    80
    100
    85
    相关试卷

    2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省肇庆市名校数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年广东省肇庆市名校数学九年级第一学期开学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map