搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年莆田市重点中学九上数学开学考试试题【含答案】

    2024-2025学年莆田市重点中学九上数学开学考试试题【含答案】第1页
    2024-2025学年莆田市重点中学九上数学开学考试试题【含答案】第2页
    2024-2025学年莆田市重点中学九上数学开学考试试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年莆田市重点中学九上数学开学考试试题【含答案】

    展开

    这是一份2024-2025学年莆田市重点中学九上数学开学考试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在点中,一次函数y=kx+2(k<0)的图象不可能经过的点是( )
    A.B.C.D.
    2、(4分)下列根式中,与为同类二次根式的是( )
    A.B.C.D.
    3、(4分)若n边形的内角和等于外角和的3倍,则边数n为( )
    A.n=6B.n=7
    C.n=8D.n=9
    4、(4分)下列命题中,是真命题的是( )
    A.对角线互相垂直的四边形是菱形B.对角形相等的四边形是矩形
    C.顺次连结平行四边形各边中点所得四边形是平行四边形D.一组邻边相等的平行四边形是正方形
    5、(4分)正n边形每个内角的大小都为108°,则n=( )
    A.5B.6C.7D.8
    6、(4分)下列根式中,不能与合并的是( )
    A.B.C.D.
    7、(4分)如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为( )
    A.6B.5C.4D.3
    8、(4分)如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是( )
    A.,B.
    C.,,D.,
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为_____.
    10、(4分)如图,菱形ABCD的对角线相交于点O,若AB=5,OA=4,则菱形ABCD的面积_____.
    11、(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
    12、(4分)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).
    13、(4分)某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.
    (1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,
    (1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.
    15、(8分)如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,∠B=90°,DC=5cm.点P从点A向点D以lcm/s的速度运动,到D点停止,点Q从点C向B点以2cm/s的速度运动,到B点停止,点P,Q同时出发,设运动时间为t(s).
    (1)用含t的代数式表示:AP= ;BQ= .
    (2)当t为何值时,四边形PDCQ是平行四边形?
    (3)当t为何值时,△QCD是直角三角形?
    16、(8分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.
    若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?
    若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.
    17、(10分)已知平行四边形ABCD的两边AB、BC的长是关于x的方程x2-mx+-=0的两个实数根.
    (1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
    (2)若AB的长为2,那么平行四边形ABCD的周长是多少?
    18、(10分)已知的三边长分别为,求证:是直角三角形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)现有甲、乙两支足球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是__队
    20、(4分)已知点,在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为4,则_______.
    21、(4分)化简:=__________.
    22、(4分)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=,CD=5,那么∠D的度数是_____.
    23、(4分)2016年5月某日,重庆部分区县的最高温度如下表所示:
    则这组数据的中位数是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知一次函数的图象过点,.
    (1)求此函数的表达式;
    (2)若点在此函数的图象上,求的值.
    25、(10分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.
    26、(12分)如图,直线过A(﹣1,5),P(2,a),B(3,﹣3).
    (1)求直线AB的解析式和a的值;
    (2)求△AOP的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由条件可判断出直线所经过的象限,再进行判断即可.
    【详解】
    解:∵在y=kx+2(k<0)中,令x=0可得y=2,
    ∴一次函数图象一定经过第一、二象限,
    ∵k<0,
    ∴y随x的增大而减小,
    ∴一次函数不经过第三象限,
    ∴其图象不可能经过Q点,
    故选:D.
    本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.
    2、A
    【解析】
    先把二次根式与化为最简二次根式,再进行判断, ∵=,四个选项中只有 A与被开方数相同,是同类二次根式,故选A
    3、C
    【解析】
    根据n边形的内角和等于外角和的3倍,可得方程180(n-2)=360×3,再解方程即可.
    【详解】
    解:由题意得:180(n-2)=360×3,
    解得:n=8,
    故选:C.
    此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
    4、C
    【解析】
    根据菱形、矩形、平行四边形、正方形的判定定理逐项判断即可.
    【详解】
    解:A. 对角线互相垂直的平行四边形是菱形,此选项不符合题意;
    B. 对角形相等的平行四边形是矩形,此选项不符合题意;
    C. 顺次连结平行四边形各边中点所得四边形是平行四边形 ,此选项符合题意;
    D. 一组邻边相等的矩形是正方形,此选项不符合题意;
    故选:C.
    本题考查的知识点是菱形、矩形、平行四边形、正方形的判定定理,熟记菱形、矩形、平行四边形、正方形的判定定理内容是解此题的关键.
    5、A
    【解析】
    试题分析:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n=360°÷72°=1.故选A.
    考点:多边形内角与外角.
    6、C
    【解析】
    解:A、,本选项不合题意;
    B、,本选项不合题意;
    C、,本选项合题意;
    D、,本选项不合题意;
    故选C.
    考点:同类二次根式.
    7、C
    【解析】
    分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.
    详解:∵AB=AC=5,AD平分∠BAC,BC=6
    ∴BD=CD=3,∠ADB=90°
    ∴AD==4.
    故选C.
    点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.
    8、A
    【解析】
    根据正方形的判定定理即可求解.
    【详解】
    A∵,∴四边形ABCD为矩形,
    由,所以矩形ABCD为正方形,
    B. ,四边形ABCD为菱形;
    C. ,,,四边形ABCD为菱形;
    D. ,,不能判定四边形ABCD为正方形,
    故选A.
    此题主要考查正方形的判定,解题的关键是熟知正方形的判定定理.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,
    ∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,
    ∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,
    ∴AO'=AC+O'C=6,
    ∴AB'=;
    故答案为1.
    此题考查菱形的性质,平移的性质,勾股定理,解题关键在于得到AO=OC=AC=2,OB=OD=BD=8.
    10、3
    【解析】
    根据菱形的性质:菱形的两条对角线互相垂直可计算出该菱形的面积.
    【详解】
    解:因为四边形ABCD是菱形,
    所以AC⊥BD.
    在Rt△AOB中,利用勾股定理求得BO=1.
    ∴BD=6,AC=2.
    ∴菱形ABCD面积为×AC×BD=3.
    故答案为3.
    本题考查了菱形的性质的灵活运用,熟练运行菱形的性质来求其面积是解决此题的关键.
    11、0.4m
    【解析】
    先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.
    【详解】
    ∵AB⊥BD,CD⊥BD,
    ∴∠ABO=∠CDO.
    ∵∠AOB=∠COD,
    ∴△OAB∽△OCD,
    ∴AO:CO=AB:CD,
    ∴4:1=1.6:CD,
    ∴CD=0.4.
    故答案为:0.4.
    本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.
    12、
    【解析】
    过C作CD⊥AB,易得∠BAC=∠BCA=30°,进而得到BC=BA=20,在Rt△BCD中,利用30°角所对的直角边是斜边的一半与勾股定理即可求出CD.
    【详解】
    如图,过C作CD⊥AB,
    ∵渔船速度为30海里/h,40min后渔船行至B处
    ∴AB=海里
    由图可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,
    ∴∠BCA=180°-120°-30°=30°
    ∴∠BAC=∠BCA
    ∴BC=BA=20海里
    在Rt△BCD中,∠BCD=30°,
    ∴BD=BC=10海里
    ∴CD=海里
    故答案为:.
    本题考考查了等腰三角形的性质,含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.
    13、4700 2250 中位数
    【解析】
    分析:
    根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.
    详解:
    (1)这组数据的平均数为:
    (30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11
    =4700(元);
    (2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,
    ∴这组数据的中位数是:2250;
    (3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,
    ∴用“中位数”更能反映出该公司全体员工的月人均收入水平.
    综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.
    点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)
    【解析】
    (1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;
    (1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几
    个单位.
    15、(1)tcm,(15﹣2t)cm;(2)t=3秒;(3)当t为秒或秒时,△QCD是直角三角形.
    【解析】
    (1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,BQ的长
    (2)当AP=CQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;
    (3)当∠CDQ=90°或∠CQD=90°△QCD是直角三角形,分情况讨论t的一元一次方程方程,解方程求出符合题意的t值即可;
    【详解】
    (1)由运动知,AP=t,CQ=2t,
    ∴BQ=BC﹣CQ=15﹣2t,
    故答案为tcm,(15﹣2t)cm;
    (2)由运动知,AP=t,CQ=2t,
    ∴DP=AD﹣AP=12﹣t,
    ∵四边形PDCQ是平行四边形,
    ∴PD=CQ,
    ∴12﹣t=2t,
    ∴t=3秒;
    (3)∵△QCD是直角三角形,
    ∴∠CDQ=90°或∠CQD=90°,
    ①当∠CQD=90°时,BQ=AD=12,
    ∴15﹣2t=12,
    ∴t= 秒,
    ②当∠CDQ=90°时,如图,
    过点D作DE⊥BC于E,
    ∴四边形ABED是矩形,
    ∴BE=AD=12,
    ∴CE=BC﹣BE=3,
    ∵∠CED=∠CDQ=90°,∠C=∠C,
    ∴△CDE∽△CQD,
    ∴,
    ∴ ,
    ∴t= 秒,
    即:当t为 秒或秒时,△QCD是直角三角形.
    此题考查平行四边形的判定和直角三角形的判定,解题关键是掌握性质并且灵活运用求解
    16、(1)修建的两块矩形绿地的面积共为144平方米,(2)人行通道的宽度为1米.
    【解析】
    根据题意得:两块矩形绿地的长为米,宽为米,可求得面积;
    设人行通道的宽度为x米,则两块矩形绿地的长为米,宽为米,
    根据题意得:,解方程可得.
    【详解】
    解:根据题意得:
    两块矩形绿地的长为米,
    宽为米,
    面积为米,
    答:修建的两块矩形绿地的面积共为144平方米,
    设人行通道的宽度为x米,
    则两块矩形绿地的长为米,
    宽为米,
    根据题意得:,
    解得:舍去,,
    答:人行通道的宽度为1米.
    本题考核知识点:一元二次方程应用. 解题关键点:根据题意列出方程.
    17、(1)m=1时,四边形ABCD是菱形,菱形ABCD的边长是;(2)平行四边形ABCD的周长是1.
    【解析】
    试题分析: (1)∵四边形ABCD是菱形,
    ∴AB=AD,
    ∴△=0,即m2﹣4(﹣)=0,
    整理得:(m﹣1)2=0,
    解得m=1,
    当m=1时,原方程为x2﹣x+=0,
    解得:x1=x2=0.1,
    故当m=1时,四边形ABCD是菱形,菱形的边长是0.1;
    (2)把AB=2代入原方程得,m=2.1,
    把m=2.1代入原方程得x2﹣2.1x+1=0,解得x1=2,x2=0.1,
    ∴C▱ABCD=2×(2+0.1)=1.
    考点:一元二次方程的应用;平行四边形的性质;菱形的性质.
    18、见解析.
    【解析】
    根据勾股定理的逆定理解答即可.
    【详解】
    证明:

    以为三边的是直角三角形.
    本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、乙
    【解析】
    根据方差的定义,方差越小数据越稳定即可得出答案.
    【详解】
    解:两队队员身高平均数均为1.85米,方差分别为,,

    身高较整齐的球队是乙队;
    故答案为:乙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    20、2
    【解析】
    如图,由△ABP的面积为4,知BP•AP=1.根据反比例函数中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.
    【详解】
    如图
    解:∵△ABP的面积为 BP•AP=4,
    ∴BP•AP=1,
    ∵P是AC的中点,
    ∴A点的纵坐标是B点纵坐标的2倍,
    又∵点A、B都在双曲线(x>0)上,
    ∴B点的横坐标是A点横坐标的2倍,
    ∴OC=DP=BP,
    ∴k=OC•AC=BP•2AP=2.
    故答案为:2.
    主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题时一定要正确理解k的几何意义.
    21、2x
    【解析】
    根据分式的除法法则进行计算即可.
    【详解】
    故答案为:.
    本题考查了分式除法运算,掌握分式的除法法则是解题的关键.
    22、60°或120°
    【解析】
    该题根据题意分为两种情况,首先正确画出图形,根据已知易得直角三角形DEC的直角边和斜边的长,然后利用三角函数,即可求解.
    【详解】
    ①如图1,
    过D作DE⊥BC于E,则∠DEC=∠DEB=90°,
    ∵AD∥BC,∠A=90°,
    ∴∠B=90°,
    ∴四边形ABED是矩形,
    ∴∠ADE=90°,AB=DE=,
    ∵CD=5,
    ∴sinC==,
    ∴∠C=60°,
    ∴∠EDC=30°,
    ∴∠ADC=90°+30°=120°;
    ②如图2,
    此时∠D=60°,
    即∠D的度数是60°或120°,
    故答案为:60°或120°.
    该题重点考查了三角函数的相关知识,解决该题的关键一是:能根据题意画出两种情况,二是:把该题转化为三角函数问题,从而即可求解.
    23、27℃
    【解析】
    根据中位数的求解方法,先排列顺序,再求解.
    【详解】
    解:将这组数据按从小到大的顺序排列:24,25,26,26,28,28,29,29,
    此组数据的个数是偶数个,所以这组数据的中位数是(26+28)÷2=27,
    故答案为27℃.
    本题考查了中位数的意义.先把数据按由小到大顺序排序:若数据个数为偶数,则取中间两数的平均数;若数据个数为奇数,则取中间的一个数.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=x+3;(2)a=4;
    【解析】
    (1)把A、B两点坐标代入y=kx+b中得到关于k、b的方程组,然后解方程组求出k、b即可得到一次函数解析式;
    (2)根据一次函数图象上点的坐标特征,把(a,6)代入一次函数解析式中可求出a的值;
    【详解】
    (1)把A(0,3),B(-4,0)代入y=kx+b得 ,解得 .
    所以一次函数解析式为y=x+3;
    (2)把(a,6)代入y=x+3得a+3=6,解得a=4;
    此题考查待定系数法求一次函数解析式,解题关键在于先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
    25、,.
    【解析】
    先对进行化简,再选择-1,0,1代入计算即可.
    【详解】
    原式
    因为且
    所以当时,原式
    当时,原式
    考查了整式的化简求值,解题关键是熟记分式的运算法则.
    26、(2)-2(2)
    【解析】
    (2)设直线的表达式为y=kx+b,把点A. B的坐标代入求出k、b,即可得出答案; 把P点的坐标代入求出即可得到a;
    (2)根据坐标和三角形面积公式求出即可.
    【详解】
    (2)设直线AB的解析式为y=kx+b(k≠0),
    将A(﹣2,5),B(2,﹣2)代入y=kx+b,得:,
    解得:,
    ∴直线AB的解析式为y=﹣2x+2.
    当x=2时,y=﹣2x+2=﹣2,
    ∴点P的坐标为(2,﹣2),
    即a的值为﹣2.
    (2)设直线AB与y轴交于点D,连接OA,OP,如图所示.
    当x=0时,y=﹣2x+2=2,
    ∴点D的坐标为(0,2).
    S△AOP=S△AOD+S△POD=OD•|xA|+OD•|xP|=×2×2+×2×2=.
    本题考查一元一次方程和直角坐标系的问题,解题的关键是掌握求解一元一次方程.
    题号





    总分
    得分
    批阅人
    地区
    合川
    永川
    江津
    涪陵
    丰都
    梁平
    云阳
    黔江
    温度(℃)
    25
    26
    29
    26
    24
    28
    28
    29

    相关试卷

    2024-2025学年那曲市重点中学九上数学开学统考试题【含答案】:

    这是一份2024-2025学年那曲市重点中学九上数学开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】:

    这是一份2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年廊坊市重点中学九上数学开学质量跟踪监视试题【含答案】:

    这是一份2024-2025学年廊坊市重点中学九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map