终身会员
搜索
    上传资料 赚现金

    2024-2025学年青海省海南州九上数学开学达标检测模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年青海省海南州九上数学开学达标检测模拟试题【含答案】第1页
    2024-2025学年青海省海南州九上数学开学达标检测模拟试题【含答案】第2页
    2024-2025学年青海省海南州九上数学开学达标检测模拟试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年青海省海南州九上数学开学达标检测模拟试题【含答案】

    展开

    这是一份2024-2025学年青海省海南州九上数学开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省( )元.
    A.4B.5C.6D.7
    2、(4分)某校规定学生的平时作业,期中考试,期末考试三项成绩分别是按30%、30%、40%计人学期总评成绩,小明的平时作业,期中考试,期末考试的英语成绩分别是93分、90分、96分,则小明这学期的总评成绩是( )
    A.92B.90C.93D.93.3
    3、(4分)张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是( )
    A.B.
    C.D.
    4、(4分)将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是( )
    A.,1B.-,1C.-,-1D.,-1
    5、(4分)如图,已知点A(1,0),点B(b,0)(b>1),点P是第一象限内的动点,且点P的纵坐标为,若△POA和△PAB相似,则符合条件的P点个数是( )
    A.0B.1C.2D.3
    6、(4分)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是
    A.4 B.3 C.2 D.1
    7、(4分)如果a>b,下列各式中正确的是( )
    A.ac>bcB.a﹣3>b﹣3C.﹣2a>﹣2bD.
    8、(4分)张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是米/分,则可列得方程为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点,关于x轴对称,则________.
    10、(4分)如图,已知,与之间的距离为3, 与之间的距离为6, 分别等边三角形的三个顶点,则此三角形的边长为__________.
    11、(4分)直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是_____.
    12、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
    13、(4分)在四边形中,给出下列条件:① ② ③ ④
    其中能判定四边形是平行四边形的组合是________或 ________或_________或_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:

    根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.
    (l)请算出三人的民主评议得分;
    (2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到 0.01 )?
    (3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按 4 : 3 : 3 的比例确定个人成绩,那么谁将被录用?
    15、(8分)如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:
    (1)点在上运动的时间为 ,在上运动的速度为
    (2)设的面积为,求当点在上运动时,与之间的函数解析式;
    (3)①下列图表示的面积与时间之间的函数图象是 .
    ②当 时,的面积为
    16、(8分)在平面直角坐标系中,过点C(1,3)、D(3,1)分别作x轴的垂线,垂足分别为A、B.
    (1)求直线CD和直线OD的解析式;
    (2)点M为直线OD上的一个动点,过M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
    (3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为t,△AOC与△OBD重叠部分的面积记为s,试求s与t的函数关系式.
    17、(10分)(1)计算:(1+2)(﹣)﹣(﹣)2
    (2)因式分解:2mx2﹣8mxy+8my2
    18、(10分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “同旁内角互补,两直线平行”的逆命题是_____________________________.
    20、(4分)一次函数y=2x+1的图象与x轴的交点坐标为______.
    21、(4分)用配方法解方程时,将方程化为的形式,则m=____,n=____.
    22、(4分)若,则xy的值等于_______.
    23、(4分)如图,在平面直角坐标系中,菱形的顶点在轴上,顶点在反比例函数的图象上,若对角线,则的值为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线y=x﹣3交x轴于A,交y轴于B,
    (1)求A,B的坐标和AB的长(直接写出答案);
    (2)点C是y轴上一点,若AC=BC,求点C的坐标;
    (3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.
    25、(10分)阅读材料,解答问题:
    (1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为1.”上述记载说明:在中,如果,,,,那么三者之间的数量关系是: .
    (2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形,中空的部分是一个小正方形.结合图①,将下面的证明过程补充完整:
    ∵,
    (用含的式子表示)
    又∵ .


    ∴ .
    (3)如图②,把矩形折叠,使点与点重合,点落在点处,折痕为.如果,求的长.
    26、(12分)如图1,正方形中,点、的坐标分别为,,点在第一象限.动点在正方形的边上,从点出发沿匀速运动,同时动点以相同速度在轴上运动,当点运动到点时,两点同时停止运动,设运动时间为秒.当点在边上运动时,点的横坐标(单位长度)关于运动时间(秒)的函数图象如图2所示.
    (1)正方形边长_____________,正方形顶点的坐标为__________________;
    (2)点开始运动时的坐标为__________,点的运动速度为_________单位长度/秒;
    (3)当点运动时,点到轴的距离为,求与的函数关系式;
    (4)当点运动时,过点分别作轴,轴,垂足分别为点、,且点位于点下方,与能否相似,若能,请直接写出所有符合条件的的值;若不能,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.
    【详解】
    解:设y关于x的函数关系式为y=kx+b,
    当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,
    ,解得:,
    ∴y=10x(0≤x≤2);
    当x>2时,将(2,20),(4,36)代入y=kx+b中,
    ,解得:,
    ∴y=8x+4(x≥2).
    当x=1时,y=10x=10,
    当x=5时,y=44,
    10×5-44=6(元),
    故选C.
    本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.
    2、D
    【解析】
    小明这学期总评成绩是平时作业、期中练习、期末考试的成绩与其对应百分比的乘积之和.
    【详解】
    解:小明这学期的总评成绩是93×30%+90×30%+96×40%=93.3(分)
    故选:D.
    本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.
    3、C
    【解析】
    张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢.
    【详解】
    根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢,所以选项C比较符合题意.
    故选C
    考核知识点:函数图象的判断.理解题意是关键.
    4、D
    【解析】
    分析:
    由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.
    详解:
    ∵在直线中,当时,,
    ∴直线过点(0,1),
    又∵直线是由直线向右平移4个单位长度得到的,
    ∴,且直线过点(4,1),
    ∴,解得:,
    ∴.
    故选D.
    点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.
    5、D
    【解析】
    利用相似三角形的对应边成比例,分①△PAO≌△PAB,②△PAO∽△BAP两种情况分别求解即可.
    【详解】
    ∵点P的纵坐标为,
    ∴点P在直线y=上,
    ①当△PAO≌△PAB时,AB=b﹣1=OA=1,∴b=2,则P(1,);
    ②∵当△PAO∽△BAP时,PA:AB=OA:PA,
    ∴PA2=AB•OA,
    ∴=b﹣1,
    ∴(b﹣8)2=48,
    解得 b=8±4,
    ∴P(1,2+)或(1,2﹣),
    综上所述,符合条件的点P有3个,
    故选D.
    本题考查了相似三角形的性质,正确地分类讨论是解题的关键.
    6、B
    【解析】
    试题分析:∵DE=BF,∴DF=BE。
    ∵在Rt△DCF和Rt△BAE中,CD=AB,DF=BE,∴Rt△DCF≌Rt△BAE(HL)。
    ∴FC=EA。故①正确。
    ∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC。
    ∵FC=EA,∴四边形CFAE是平行四边形。
    ∴EO=FO。故②正确。
    ∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE。∴CD∥AB。
    ∵CD=AB,∴四边形ABCD是平行四边形。故③正确。
    由上可得:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE等。故④图中共有6对全等三角形错误。
    故正确的有3个。故选B。
    7、B
    【解析】
    根据不等式的性质对各选项分析判断即可得解.
    【详解】
    解:A、a>b不等式两边都乘以c,c的正负情况不确定,所以ac>bc不一定成立,故本选项错误;
    B、a>b不等式的两边都减去3可得a-3>b-3,故本选项正确;
    C、a>b不等式的两边都乘以-2可得-2a<-2b,故本选项错误;
    D、a>b不等式两边都除以2可得,故本选项错误.
    故选:B.
    本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
    8、A
    【解析】
    设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度-李老师行驶的路程3000÷他的速度=10分钟,根据等量关系列出方程即可.
    【详解】
    设张老师骑自行车的速度是x米/分,由题意得:

    故选:A.
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.
    【详解】
    解:∵点,关于x轴对称,
    ∴,
    ∴.
    故答案为:.
    此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.
    10、
    【解析】
    如图,构造一线三等角,使得.根据“ASA”证明,从而,再在Rt△BEG中求出CE的长,再在Rt△BCE中即可求出BC的长.
    【详解】
    如图,构造一线三等角,使得.
    ∵a∥c,
    ∴∠1=∠AFD=60°,
    ∴∠2+∠CAF=60°.
    ∵a∥b,
    ∴∠2=∠3,
    ∴∠3+∠CAF=60°.
    ∵∠3+∠4=60°,
    ∴∠4=∠CAF,
    ∵b∥c,
    ∴∠4=∠5,
    ∴∠5=∠CAF,
    又∵AC=BC,∠AFC=∠CGB,
    ∴,
    ∴CG=AF.
    ∵∠ACF=60°,
    ∴DAF=30°,
    ∴DF=AF,
    ∵AF2=AD2+DF2,
    ∴,
    ∴,
    同理可求,
    ∴,
    ∴.
    本题考查了平行线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,以及勾股定理,正确作出辅助线是解答本题的关键.
    11、x>2
    【解析】
    根据一次函数的性质得出y随x的增大而增大,当x>2时,y>1,即可求出答案.
    【详解】
    解:∵直线y=kx+b(k>1)与x轴的交点为(2,1),
    ∴y随x的增大而增大,
    当x>2时,y>1,
    即kx+b>1.
    故答案为x>2.
    本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.
    12、(只写一个即可)
    【解析】
    设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
    【详解】
    设方程为x2+kx+4=0,由题意得
    k2-16=0,
    ∴k=±4,
    ∴一次项为(只写一个即可).
    故答案为:(只写一个即可).
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    13、①③ ①④ ②④ ③④
    【解析】
    根据平行四边形的判定定理确定即可.
    【详解】
    解:如图,
    ①③:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    ①④:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    ②④:,, 四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);
    ③④:, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.
    故答案为:①③或①④或②④或③④.
    本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (l) 50 分,80 分,70 分(2)候选人乙将被录用(3)候选人丙将被录用
    【解析】
    (1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;
    (2)据平均数的概念求得甲、乙、丙的平均成绩,进行比较;
    (3)根据加权成绩分别计算三人的个人成绩,进行比较.
    【详解】
    (1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;
    (2)甲的平均成绩为:(分),
    乙的平均成绩为:(分),
    丙的平均成绩为:(分).
    由于,所以候选人乙将被录用.
    (3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么
    甲的个人成绩为:(分),
    乙的个人成绩为:(分),
    丙的个人成绩为:(分),
    由于丙的个人成绩最高,所以候选人丙将被录用.
    解答本题的关键是读懂题意,通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算.
    15、(1)6,2;(2);(3)①C;②4或1.
    【解析】
    (1)由图象得:点P在AB上运动的时间为6s,在CD上运动的速度为6÷(15-12)=2(cm/s);
    (2)当点P在CD上运动时,由题意得:PC=2(t-12),得出PD=30-2t,由三角形面积公式即可得出答案;
    (3)①当点P在AB上运动时,y与t之间的函数解析式为y=3t;当点P在BC上运动时,y与t之间的函数解析式为y=18;当点P在CD上运动时,y与t之间的函数解析式为y=-6t+90,即可得出答案;
    ②由题意分两种情况,即可得出结果.
    【详解】
    (1)由题意得:点在上运动的时间为,
    在上运动的速度为;
    故答案为:6,2;
    (2)当点在上运动时,
    由题意得:,

    的面积为,
    即与之间的函数解析式为;
    (3)①当点在上运动时,与之间的函数解析式为;
    当点在上运动时,与之间的函数解析式为;
    当点在上运动时,与之间的函数解析式为,
    表示的面积与时间之间的函数图象是,
    故答案为:;
    ②由题意得:当时,;
    当时,;
    即当或时,的面积为;
    故答案为:4或1.
    本题是四边形综合题目,考查了正方形的性质、函数与图象、三角形面积公式、分类讨论等知识;本题综合性强,熟练掌握正方形的性质和函数与图象是解题的关键.
    16、(1)直线OD的解析式为y=x;(2)存在.满足条件的点M的横坐标或,理由见解析;(3)S=﹣(t﹣1)2+.
    【解析】
    (1)理由待定系数法即可解决问题;
    (2)如图,设M(m,m),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-m|=3,解方程即可;
    (3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可;
    【详解】
    (1)设直线CD的解析式为y=kx+b,则有,解得,
    ∴直线CD的解析式为y=﹣x+1.
    设直线OD的解析式为y=mx,则有3m=1,m=,
    ∴直线OD的解析式为y=x.
    (2)存在.
    理由:如图,设M(m, m),则N(m,﹣m+1).
    当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,
    ∴|﹣m+1﹣m|=3,
    解得m=或,
    ∴满足条件的点M的横坐标或.
    (3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.
    设O′C′与x轴交于点E,与直线OD交于点P;
    设A′C′与x轴交于点F,与直线OD交于点Q.
    因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),
    则图中AF=t,F(1+t,0),Q(1+t, +t),C′(1+t,3﹣t).
    设直线O′C′的解析式为y=3x+b,
    将C′(1+t,3﹣t)代入得:b=﹣1t,
    ∴直线O′C′的解析式为y=3x﹣1t.
    ∴E(t,0).
    联立y=3x﹣1t与y=x,解得x=t,
    ∴P(t, t).
    过点P作PG⊥x轴于点G,则PG=t.
    ∴S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG
    =(1+t)(+t)﹣•t•t
    =﹣(t﹣1)2+.
    本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.
    17、(1)﹣+1;(1)1m(x﹣1y)1.
    【解析】
    (1)利用平方差公式,完全平方公式进行计算即可
    (1)先提取公因式1m,再对余下的多项式利用完全平方公式继续分解.
    【详解】
    (1)原式=﹣+6﹣1 ﹣(1﹣1+3)
    =﹣+6﹣1﹣5+1
    =﹣+1;
    (1)原式=1m(x﹣4xy+4y)
    =1m(x﹣1y)1.
    此题考查提公因式法与公式法的综合运用,二次根式的混合运算,解题关键在于掌握运算法则
    18、见详解.
    【解析】
    结合正方形的性质利用AAS可证,由全等三角形对应边相等的性质易证结论.
    【详解】
    证明:四边形ABCD是正方形




    在和中,



    本题主要考查了全等三角形的判定与性质,灵活的利用正方形的性质及平行线的性质确定全等的条件是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、两直线平行,同旁内角互补
    【解析】
    分析:把一个命题的条件和结论互换就得到它的逆命题.命题“同旁内角互补,两直线平行”的条件是同旁内角互补,结论是两直线平行,故其逆命题是两直线平行,同旁内角互补.
    详解:
    命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补,
    故答案为两直线平行,同旁内角互补.
    点睛:考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    20、(-,0)
    【解析】
    令y=0可求得x的值,则可求得与x轴的交点坐标.
    【详解】
    解:令y=0,即2x+1=0,
    解得:x=-,
    ∴一次函数y=2x+1的图象与x轴的交点坐标为(-,0).
    故答案为:(-,0).
    本题考查了一次函数与x轴的交点坐标.
    21、m =1 n =1
    【解析】
    先把常数项移到方程右边,再把方程两边都加上1,然后把方程作边写成完全平方形式,从而得到m、n的值.
    【详解】
    解:
    x2-2x=5,
    x2-2x+1=1,
    (x-1)2=1,
    所以m=1,n=1.
    故答案为1,1.
    本题考查解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
    22、1
    【解析】
    直接利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.
    【详解】
    解:∵,
    ∴x-1=0, y-1=0,
    解得:x=1,y=1,
    则xy=1.
    此题主要考查了完全平方公式,偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.
    23、-1
    【解析】
    先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.
    【详解】
    解:∵菱形的两条对角线的长分别是6和4,
    ∴C(-3,4),
    ∵点C在反比例函数y=的图象上,
    ∴k=(-3)×4=-1.
    故答案为:-1
    本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)点A为(4,0),点B为(0,-3),AB=5;(2)(0,);(3)点D坐标为(-1,0)或(1,0).
    【解析】
    (1)设x=0,y=0,可以求出A,B坐标;、
    (2)设OC=x,则BC=BO+OC=x+3,即AC=BC=x+3,由勾股定理得;
    (3),得,,.
    【详解】
    (1)点A为(4,0),点B为(0,-3),AB=5
    (2)设OC=x,则BC=BO+OC=x+3
    即AC=BC=x+3
    在Rt△AOC中,

    本题考核知识点:一次函数的应用. 解题关键点:此题比较综合,要注意掌握数形结合思想.
    25、(1);(2);正方形ABCD的面积;四个全等直角三角形的面积正方形CFGH的面积;;(2)2.
    【解析】
    (1)根据勾股定理解答即可;
    (2)根据题意、结合图形,根据完全平方公式进行计算即可;
    (2)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.
    【详解】
    解:(1)在中,,,,,
    由勾股定理得,,
    故答案为:;
    (2),
    又正方形的面积四个全等直角三角形的面积的面积正方形CFGH的面积,



    故答案为:;正方形的面积;四个全等直角三角形的面积的面积正方形CFGH的面积;;
    (2)设,则,
    由折叠的性质可知,,
    在中,,
    则,
    解得,,
    则PN的长为2.
    本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.
    26、(3)30,(35.2);(2)(3,0),3;(3)d= t﹣5;(5)t的值为3s或 s或 s.
    【解析】
    (3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.利用全等三角形的性质解决问题即可.
    (2)根据题意,易得Q(3,0),结合P、Q得运动方向、轨迹,分析可得答案;
    (3)分两种情形:①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.分别求解即可解决问题.
    (5)①如图5﹣3中,当点P在线段AB上时,有两种情形.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,利用(3)中结论构建方程即可解决问题.
    【详解】
    解:(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.

    ∵∠ABC=90°=∠AHB=∠BFC
    ∴∠ABH+∠CBF=90°,∠ABH+∠BAH=90°,
    ∴∠BAH=∠CBF,∵AB=BC,
    ∴△ABH≌△BCF.
    ∴BH=CF=8,AH=BF=3.
    ∴AB==30,HF=35,
    ∴OG=FH=35,CG=8+5=2.
    ∴所求C点的坐标为(35,2).
    故答案为30,(35,2)
    (2)根据题意,易得Q(3,0),
    点P运动速度每秒钟3个单位长度.
    故答案为(3,0),3.
    (3)①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.

    易知四边形OHKN是矩形,可得OH=KN=5,
    ∵PK∥AH,
    ∴,
    ∴,
    ∴PK=(30﹣t),
    ∴d=PK+KN=﹣t+30.
    ②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.

    同法可得PK=(t﹣30),
    ∴d=PK+KN=t﹣5.
    (5)①如图5﹣3中,当点P在线段AB上时,有两种情形:

    当时,△APM与△OPN相似,可得,
    解得t=3.
    当时,△APM与△OPN相似,可得,
    解得t=.
    ②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,

    可得:∠OPN=∠PAM=∠AOP,
    ∵PM⊥OA,
    ∴AM=OM=PN=5,
    由(3)②可知:5=t﹣5,
    解得t=.
    综上所述,拇指条件的t的值为3s或s或s.
    本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形或全等三角形解决问题,需要利用参数构建方程解决问题,属于中考压轴题.
    题号





    总分
    得分

    相关试卷

    2024-2025学年江苏省泰兴市实验九上数学开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年江苏省泰兴市实验九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖南省邵阳市双清区数学九上开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年湖南省邵阳市双清区数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省商丘市名校九上数学开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年河南省商丘市名校九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map