搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年山东德州市武城县数学九上开学监测模拟试题【含答案】

    2024-2025学年山东德州市武城县数学九上开学监测模拟试题【含答案】第1页
    2024-2025学年山东德州市武城县数学九上开学监测模拟试题【含答案】第2页
    2024-2025学年山东德州市武城县数学九上开学监测模拟试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东德州市武城县数学九上开学监测模拟试题【含答案】

    展开

    这是一份2024-2025学年山东德州市武城县数学九上开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为( )
    A.60°B.70°C.100°D.110°
    2、(4分)如图,点,的坐标为,在轴的正半轴,且写过作,垂足为,交轴于点,过作,垂足为,交轴于点,过作,垂足为,交轴于点,,按如此规律进行下去,则点的纵坐标为( )
    A.B.
    C.D.
    3、(4分)在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )
    A.a=9 b=41 c=40B.a=b=5 c=5
    C.a:b:c=3:4:5D.a=11 b=12 c=15
    4、(4分)如图,在中,于点,于点,是的中点,连结,设,则()
    A.B.C.D.
    5、(4分)方程 x2  x 的解是( )
    A.x  1B.x1  1 , x2  0
    C.x  0D.x1  1 , x2  0
    6、(4分)如图,在直角坐标系中,一次函数的图象与正比例函数的图象交于点,一次函数的图象为,且,,能围成三角形,则在下列四个数中,的值能取的是( )
    A.﹣2B.1C.2D.3
    7、(4分)现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
    A.x(x-20)=300B.x(x+20)=300C.60(x+20)=300D.60(x-20)=300
    8、(4分)小刚以400 m/min的速度匀速骑车5 min,在原地休息了6 min,然后以500 m/min的速度骑回出
    发地,小刚与出发地的距离s(km)关于时间t(min)的函数图象是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系 xOy 中,点O 是坐标原点,点 B 的坐标是3m, 4m 4,则OB 的最小值是____________.
    10、(4分)如图,已知是矩形内一点,且,,,那么的长为________.
    11、(4分)函数中,自变量x的取值范围是 ▲ .
    12、(4分)一根木杆在离地米处折断,木杆的顶端在离木杆底端米处,则木杆折断之前的高度为__________米.
    13、(4分)已知方程,如果设,那么原方程可以变形成关于的方程为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.
    (1)求,两点的坐标;
    (2)在给定的坐标系中画出该函数的图象;
    (3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.
    15、(8分)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.
    16、(8分)先化简,再求值:1-÷其中a=2020,b=2019.
    17、(10分)已知:如图,在中,,,为外角的平分线,.
    (1)求证:四边形为矩形;
    (2)当与满足什么数量关系时,四边形是正方形?并给予证明
    18、(10分)一个有进水管与出水管的容器,从某时刻开始8min内既进水又出水,在随后的4min内只进水不出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)(0≤x≤12)之间的关系如图所示:
    (1)求y关于x的函数解析式;
    (2)每分钟进水、出水各多少升?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)关于的x方程=1的解是正数,则m的取值范围是_____.
    20、(4分)如图,在□ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 .
    21、(4分)若分式的值为正数,则x的取值范围_____.
    22、(4分)在市业余歌手大奖赛的决赛中,参加比赛的名选手成绩统计如图所示,则这名选手成绩的中位数是__________.
    23、(4分)命题“若,则.”的逆命题是_____命题.(填“真”或“假”)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A,B,C均为格点.在下列各图中画出四边形ABCD,使点D也为格点,且四边形ABCD分别符合下列条件:
    (1)是中心对称图形(画在图1中)
    (2)是轴对称图形(画在图2中)
    (3)既是轴对称图形,又是中心对称图形(画在图3中)
    25、(10分)如图,在平行四边形中,分别为边长的中点,连结.若,则四边形是什么特殊四边形?请证明你的结论.
    26、(12分)如图,AD是△ABC的边BC上的高,∠B=60°,∠C=45°,AC=6.求:
    (1)AD的长;
    (2)△ABC的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.
    解:画出图形如下所示:
    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D,∠A+∠B=180°,
    又∵∠A﹣∠B=40°,
    ∴∠A=110°,∠B=70°,
    ∴∠D=∠B=70°.
    故选B.
    2、B
    【解析】
    根据已知利用角的直角三角形中边角关系,可依次求出,,,,,,,,再由,可知点在轴的负半轴上,即可求解.
    【详解】
    解:的坐标为,,

    过作,

    ,,
    过作,

    ,,
    过作,

    ,,

    点在轴的负半轴上,
    点的纵坐标为;
    故选:.
    本题考查探索点的规律;利用角的特殊直角三角形的边角关系,分别求出各点坐标找到规律是解题的关键.
    3、D
    【解析】
    根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.
    【详解】
    解:A、因为92+402=412,故能构成直角三角形;
    B、因为52+52=(5)2,故能构成直角三角形;
    C、因为32+42=52,故能构成直角三角形;
    D、因为112+122≠152,故不能构成直角三角形;
    故选:D.
    本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.
    4、A
    【解析】
    由垂直的定义得到∠ADB=∠BEA=90°,根据直角三角形的性质得到AF=DF,BF=EF,根据等腰三角形的性质得到∠DAF=∠ADF,∠EFB=∠BEF,于是得到结论.
    【详解】
    解:∵AE⊥BC于点E,BD⊥AC于点D;
    ∴∠ADB=∠BEA=90°,
    ∵点F是AB的中点,
    ∴AF=DF,BF=EF,
    ∴∠DAF=∠ADF,∠EBF=∠BEF,
    ∴∠AFD=180°-2∠CAB,∠BFE=180°-2∠ABC,
    ∴x°=180°-∠AFD-∠BFE=2(∠CAB+∠CBA)-180°=2(180°-y°)-180°=180°-2y°,
    ∴,
    故选:A.
    本题考查了直角三角形的性质,等腰三角形的性质,三角形的内角和,正确的识别图形是解题的关键.
    5、B
    【解析】
    先变形得一元二次方程的一般形式,再用分解因式法解方程即可.
    【详解】
    解:移项,得x2-x=0,
    原方程即为,
    所以,x=0或x-1=0,
    所以x1  1 , x2  0.
    故选B.
    本题考查了一元二次方程的解法,熟知一元二次方程的四种解法(完全开平方法、配方法、公式法和分解因式法)并能根据方程的特点灵活应用是求解的关键.
    6、C
    【解析】
    把M(m,3)代入一次函数y=-2x+5得到M(1,3),求得l2的解析式为y=3x,根据l1,l2,l3能围成三角形,l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),于是得到结论.
    【详解】
    解:把M(m,3)代入一次函数y=-2x+5得,可得m=1,
    ∴M(1,3),
    设l2的解析式为y=ax,
    则3=a,
    解得a=3,
    ∴l2的解析式为y=3x,
    ∵l1,l2,l3能围成三角形,
    ∴l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),
    ∴k≠3,k≠-2,k≠1,
    ∴k的值能取的是2,
    故选C.
    本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.
    7、A
    【解析】
    设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.
    【详解】
    设扩大后的正方形绿地边长为xm,
    根据题意得x(x-20)=300,
    故选A.
    本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.
    8、C
    【解析】
    【分析】根据题意分析在各个时间段小刚离出发点的距离,结合图象可得出结论.
    【详解】由已知可得,前5min小刚与出发地相距2千米,后6min距离不变,之后距离逐渐减少.故选项C符合实际情况.
    故选:C
    【点睛】本题考核知识点:函数的图形. 解题关键点:结合实际分析函数图像.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先用勾股定理求出OB的距离,然后用配方法即可求出最小值.
    【详解】
    ∵点 B 的坐标是3m, 4m 4,O是原点,
    ∴OB=,
    ∵,
    ∴OB,
    ∴OB的最小值是,
    故答案为.
    本题考查勾股定理求两点间距离,其中用配方法求出最小值是本题的重难点.
    10、
    【解析】
    过O作EF⊥AD于E,交BC于F;过O作GH⊥DC于G,交AB于H,设CF=x,FB=y,AH=s,HB=t,则可得x2-y2=16-9=7,t2-s2=32-12=8,整理得OD2=x2+s2=(y2+t2)-1=9-1=8,即可求得AD的长.
    【详解】
    如图,过O作EF⊥AD于E,交BC于F;过O作GH⊥DC于G,交AB于H.
    设CF=x,FB=y,AH=s,HB=t,
    ∴OG=x,DG=s,
    ∴OF2=OB2-BF2=OC2-CF2,
    即42-x2=32-y2,
    ∴x2-y2=16-9=7①
    同理:OH2=12-s2=32-t2
    ∴t2-s2=32-12=8②
    又∵OH2+HB2=OB2,即y2+t2=9;
    ①-②得(x2+s2)-(y2+t2)=-1,
    ∴OD2=x2+s2=(y2+t2)-1=9-1=8,
    ∴OD=2.
    故答案为2.
    本题考查了矩形对角线相等且互相平分的性质,考查了勾股定理在直角三角形中的运用,本题中整理计算OD的长度是解题的关键.
    11、.
    【解析】
    试题分析:由已知:x-2≠0,解得x≠2;
    考点:自变量的取值范围.
    12、
    【解析】
    首先根据勾股定理计算出木杆折断出到顶端的距离,在加上木杆折断出距离底面的长度,即可计算出木杆折断之前的高度.
    【详解】
    解:木杆折断出到顶端的距离为:
    木杆折断之前的高度为:
    故答案为:9
    本题主要考查勾股定理的应用,关键在于确定数字表示的距离.
    13、(或)
    【解析】
    观察方程的两个分式具备的关系,如果设,则原方程另一个分式为可用换元法转化为关于y的分式方程.去分母即可.
    【详解】
    ∵=
    ∴把代入原方程得:,
    方程两边同乘以y整理得:.
    此题考查换元法解分式方程,解题关键在利用换元法转化即可.
    三、解答题(本大题共5个小题,共48分)
    14、(1)点A的坐标为, 点B的坐标为 (2)图形见解析(3)
    【解析】
    试题分析:令y=0,则x=2;令x=0,则y=1,即可得A,B两点的坐标;(2)连接AB即可得该函数的图象;(3)根据一次函数的性质即可求得结论.
    试题解析:
    (1)令,则;
    令,则.
    ∴点A的坐标为,
    点B的坐标为.
    (2)如图:
    (3)
    15、2.
    【解析】
    试题分析:延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.
    试题解析:如图,延长BD交AC于点F,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD.
    ∵BD⊥AD,∴∠ADB=∠ADF,
    又∵AD=AD,
    ∴△ADB≌△ADF(ASA).
    ∴AF=AB=6,BD=FD.
    ∵AC=10,∴CF=AC-AF=10-6=4.
    ∵E为BC的中点,∴DE是△BCF的中位线.
    ∴DE=CF=×4=2.
    16、;2019.
    【解析】
    先把分子、分母因式分解,再按照分式的除法法则计算、约分,最后通分,按照分式减法法则计算化简,把a、b的值代入求值即可得答案.
    【详解】
    原式=1-÷
    =1-×
    =-
    =.
    当a=2020,b=2019时,原式==2019.
    本题考查了分式的化简求值,熟练掌握分式的混合运算运算法则是解题关键.
    17、(1)见解析 (2) ,理由见解析.
    【解析】
    (1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)由正方形的性质逆推得,结合等腰三角形的性质可以得到答案.
    【详解】
    (1)证明:在△ABC中,AB=AC,AD⊥BC, ∴∠BAD=∠DAC,
    ∵AN是△ABC外角∠CAM的平分线, ∴∠MAE=∠CAE,
    ∴∠DAE=∠DAC+∠CAE=×180°=90°,
    又∵AD⊥BC,CE⊥AN, ∴∠ADC=∠CEA=90°,
    ∴四边形ADCE为矩形.
    (2)当时,四边形ADCE是一个正方形.
    理由:∵AB=AC, AD⊥BC ,
    , ,
    ∵四边形ADCE为矩形, ∴矩形ADCE是正方形.
    ∴当时,四边形ADCE是一个正方形.
    本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.
    18、(1);(2)每分钟进水5升,出水升.
    【解析】
    (1)根据题意和函数图象可以求得y与x的函数关系式;
    (2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.
    【详解】
    解:(1)当0≤x≤8时,设y关于x的函数解析式是y=kx,
    8k=10,得k=,
    即当0≤x≤8时,y与x的函数关系式为y=,
    当8≤x≤12时,设y与x的函数关系式为y=ax+b,
    ,得

    即当8≤x≤12时,y与x的函数关系式为y=5x-30,
    由上可得,y=;
    (2)进水管的速度为:20÷4=5L/min,
    出水管的速度为:=L/min
    答:每分钟进水、出水各5L,L.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m>﹣5且m≠0
    【解析】
    先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.
    【详解】
    去分母,得m=x-5,
    即x=m+5,
    ∵方程的解是正数,
    ∴m+5>0,即m>-5,
    又因为x-5≠0,
    ∴m≠0,
    则m的取值范围是m>﹣5且m≠0,
    故答案为:m>﹣5且m≠0.
    本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.
    20、21
    【解析】
    10+7+4=21
    21、x>1
    【解析】
    试题解析:由题意得:
    >0,
    ∵-6<0,
    ∴1-x<0,
    ∴x>1.
    22、8.5
    【解析】
    根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.
    【详解】
    根据图形,这个学生的分数为:,,,,,,,,,,则中位数为.
    本题考查求中位数,解题的关键是掌握求中位数的方法.
    23、假
    【解析】
    写出该命题的逆命题后判断正误即可.
    【详解】
    解:命题“若,则.”的逆命题是若a>b,则,
    例如:当a=3,b=-2时错误,为假命题,
    故答案为:假.
    本题考查了命题与定理的知识,解题的关键是交换命题的题设写出该命题的逆命题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)详见解析;(3)详见解析;
    【解析】
    (1)以AB、BC为邻边作平行四边形即可;
    (2)作点B关于直线AC的对称点D,然后连接AD、CD即可;
    (3)以AB、BC为邻边作菱形即可.
    【详解】
    (1)解:如图:
    (2)解:如图:
    (3)解:如图:
    本题考查了轴对称和中心对称作图.根据已知条件准确构造符合条件的图形是解答本题的关键.
    25、四边形是菱形,证明详见解析
    【解析】
    根据平行四边形性质得出DC=AB,DC//AB,推出BE=DF,得出平行四边形BFDE,根据直角三角形斜边上中线得出DE=BE,根据菱形的判定推出即可.
    【详解】
    解:四边形是菱形.
    证明:∵四边形是平行四边形,

    ∵点是的中点,;

    ∴四边形是平行四边形;
    又;
    ∴平行四边形是菱形.
    本题考查了平行四边形的性质和判定,菱形的判定,直角三角形斜边上中线等知识点的应用,关键是证出DE=BE和推出平行四边形BEDF.
    26、(1)AD=3;(2)S△ABC=9+3.
    【解析】
    试题分析:(1)根据三角形内角和可得∠DAC=45°,根据等角对等边可得AD=CD,然后再根据勾股定理可计算出AD的长;
    (2)根据三角形内角和可得∠BAD=30°,再根据直角三角形的性质可得AB=2BD,然后利用勾股定理计算出BD的长,进而可得BC的长,然后利用三角形的面积公式计算即可.
    解:(1)∵∠C=45°,AD是△ABC的边BC上的高,∴∠DAC=45°,∴AD=CD.
    ∵AC2=AD2+CD2,∴62=2AD2,∴AD=3
    (2)在Rt△ADB中,∵∠B=60°,∴∠BAD=30°,∴AB=2BD.
    ∵AB2=BD2+AD2,∴(2BD)2=BD2+AD2,BD=.
    ∴S△ABC=BC·AD= (BD+DC)·AD=×(+3)×3=9+3.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年辽宁省营口市名校九上数学开学监测模拟试题【含答案】:

    这是一份2024-2025学年辽宁省营口市名校九上数学开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年辽宁省铁岭市名校九上数学开学监测模拟试题【含答案】:

    这是一份2024-2025学年辽宁省铁岭市名校九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年吉林省通化市九上数学开学监测模拟试题【含答案】:

    这是一份2024-2025学年吉林省通化市九上数学开学监测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map