2024-2025学年山东省部分地区九年级数学第一学期开学统考模拟试题【含答案】
展开
这是一份2024-2025学年山东省部分地区九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列变形错误的是( )
A.B.
C.D.
2、(4分)一直角三角形两边分别为5和12,则第三边为( )
A.13B.C.13或D.7
3、(4分)对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
4、(4分)如图,在中,,,,以点为圆心,长为半径画弧,交于点,则()
A.2.5B.3C.2D.3.5
5、(4分)分式方程的解是( )
A.3B.-3C.D.9
6、(4分)下面二次根式中,是最简二次根式的是( )
A.B.C.D.
7、(4分)如果,那么等于
A.3:2B.2:5C.5:3D.3:5
8、(4分)在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是( )
A.①②B.①②③C.①②④D.①②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若双曲线在第二、四象限,则直线y=kx+2不经过第 _____象限。
10、(4分)若一个三角形的三边长分别为5、12、13,则此三角形的面积为 .
11、(4分)如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是_____.
12、(4分)已知直线与平行且经过点,则的表达式是__________.
13、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
(1)请估计当很大时,摸到白球的频率将会接近______;(精确到0.1);
(2)假如随机摸一次,摸到白球的概率P(白球)=______;
(3)试估算盒子里白色的球有多少个?
15、(8分)某校学生会在得知田同学患重病且家庭困难时,特向全校3000名同学发起“爱心”捐款活动,为了解捐款情况,学生会随机调查了该校某班学生的捐款情况,并将得到的数据绘制成如下两个统计图,请根据相关信息解答下列问题.
(1)该班的总人数为 ______ 人,将条形图补充完整;
(2)样本数据中捐款金额的众数 ______ ,中位数为 ______ ;
(3)根据样本数据估计该校3000名同学中本次捐款金额不少于20元有多少人?
16、(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.
(1)请填写下表;
(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(N>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.
17、(10分)已知某服装厂现有种布料70米,种布料52米,现计划用这两种布料生产、两种型号的时装共80套.已知做一套型号的时装需用A种布料1.1米,种布料0.4米,可获利50元;做一套型号的时装需用种布料0.6米,种布料0.9米,可获利45元.设生产型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为元.
(1)求(元)与(套)的函数关系式.
(2)有几种生产方案?
(3)如何生产使该厂所获利润最大?最大利润是多?
18、(10分)如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系xy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.
20、(4分)设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=_____.
21、(4分)不等式组的解集是_________.
22、(4分)如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为 .
23、(4分)已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m++3的值等于_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:直线始终经过某定点.
(1)求该定点的坐标;
(2)已知,,若直线与线段相交,求的取值范围;
(3)在范围内,任取3个自变量,,,它们对应的函数值分别为,,,若以,,为长度的3条线段能围成三角形,求的取值范围.
25、(10分)如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).
(1)求几秒后,PQ的长度等于5 cm.
(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.
26、(12分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.
(1)请问今年A型智能手表每只售价多少元?
(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题解析:A选项分子和分母同时除以最大公因式;B选项的分子和分母互为相反数;C选项分子和分母同时除以最大公因式,D选项正确的变形是所以答案是D选项
故选D.
2、C
【解析】
此题要考虑两种情况:当所求的边是斜边时;当所求的边是直角边时.
【详解】
由题意得:当所求的边是斜边时,则有=1;
当所求的边是直角边时,则有=.
故选:C.
本题考查了勾股定理的运用,难度不大,但要注意此类题的两种情况,很多学生只选1.
3、B
【解析】
根据一次函数的系数,结合一次函数的性质,逐个分析即可得.
【详解】
①∵k=﹣2<0,
∴一次函数中y随x的增大而减小.
∵令y=﹣2x+2中x=1,则y=0,
∴当x>1时,y<0成立,即①正确;
②∵k=﹣2<0,b=2>0,
∴一次函数的图象经过第一、二、四象限,即②正确;
③令y=﹣2x+2中x=﹣1,则y=4,
∴一次函数的图象不过点(﹣1,2),即③不正确;
④∵k=﹣2<0,
∴一次函数中y随x的增大而减小,④不正确.
故选:B
本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.
4、C
【解析】
首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB-AD即可算出答案.
【详解】
∵AC=3,BC=4,
∴AB==5,
∵以点A为圆心,AC长为半径画弧,交AB于点D,
∴AD=AC,
∴AD=3,
∴BD=AB-AD=5-3=1.
故选:C.
此题考查勾股定理,解题关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
5、A
【解析】
方程两边同时乘以x+3,化为整式方程,解整式方程后进行检验即可得.
【详解】
方程两边同时乘以x+3,得
x2-9=0,
解得:x=±3,
检验:当x=3时,x+3≠0,当x=-3时,x+3=0,
所以x=3是原分式方程的解,
所以方程的解为:x=3,
故选A.
本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.
6、C
【解析】
根据最简二次根式的概念进行判断即可.
【详解】
A、不是最简二次根式,错误;
B、不是最简二次根式,错误;
C、是最简二次根式,正确;
D、不是最简二次根式,错误;
故选C.
本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
7、B
【解析】
根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a:b=c:d,那么(a+b):b=(c+d):d (b、d≠0)】解答并作出选择.
【详解】
∵=的两个内项是b、2,两外项是a、3,
∴,
∴根据合比定理,得
,即;
同理,得
=2:5.
故选B.
本题考查比例的性质,熟练掌握比例的基本性质是解题关键.
8、C
【解析】
如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;
【详解】
解:如图,设DE交AP于O.
∵四边形ABCD是菱形
∴DA=DC=AB
∵A.P关于DE对称,
∴DE⊥AP,OA=OP
∴DA=DP
∴DP=CD,故①正确
∵AE=EB,AO=OP
∴OE//PB,
∴PB⊥PA
∴∠APB=90°
∴,故②正确
若∠DCP=75°,则∠CDP=30°
∵LADC=60°
∴DP平分∠ADC,显然不符合题意,故③错误;
∵∠ADC=60°,DA=DP=DC
∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.
故选:C
本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、三
【解析】
分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.
详解:∵反比例函数在二、四象限, ∴k<0, ∴y=kx+2经过一、二、四象限,即不经过第三象限.
点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.
10、30
【解析】
解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.
解:∵52+122=132,
∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,
∴此三角形的面积为×5×12=30
11、1-1
【解析】
如图,
过P作PE⊥CD,PF⊥BC,
∵正方形ABCD的边长是1,△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=1,
∴∠PCE=30°
∴PF=PB•sin60°=1×=,PE=PC•sin30°=2,
S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×1×+×2×1﹣×1×1=1+1﹣8=1﹣1.
故答案为1﹣1.
点睛:本题考查正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.
12、
【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
把(1,3)代入y=2x+b得2+b=3,解得b=1,
∴y=kx+b的表达式是y=2x+1.
故答案为:y=2x+1.
此题考查一次函数中的直线位置关系,解题关键在于求k的值.
13、
【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.
【详解】
解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),
故答案为:(-2,-1).
本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)0.1;(2)0.1;(3)30个
【解析】
(1)根据表中的数据,估计得出摸到白球的频率.
(2)根据概率与频率的关系即可求解;
(3)根据摸到白球的频率即可得到白球数目.
【详解】
解:(1)由表中数据可知,当n很大时,摸到白球的频率将会接近0.1,
故答案为:0.1.
(2))∵摸到白球的频率为0.1,
∴假如你摸一次,你摸到白球的概率P(白球)=0.1,
故答案为0.1;
(3)盒子里白色的球有50×0.1=30(只).
本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.
15、(1)50;补图见解析;(2)10,12.5;(3)660人
【解析】
(1)根据统计图中的数据可以求得额该班的总人数,可以求得捐款10元的人数,从而可以将条形统计图补充完整;
(2)根据补全的条形统计图可以得到相应的众数和中位数;
(3)根据统计图可以求得不少于20元有多少人数的占比,再乘以总人数即可.
【详解】
解:(1)14÷28%=50,
捐款10元的人数为:50-9-14-7-4=16,
故答案为:50,补全的条形统计图如右图所示,
(2)由补全的条形统计图可得,
样本数据中捐款金额的众数是10,中位数是: =12.5,
故答案为:10,12.5;
(3)捐款金额不少于20元的人数 人,
即该校3000名同学本次捐款金额不少于20元有660人.
此题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
16、(1)240﹣x、x﹣40、260﹣x;(2)40≤x≤240;(1)0<n≤1.
【解析】
(1)根据题意可以将表格中的空缺数据补充完整,
(2)根据题意可以求得W与x的函数关系式,并写出x的取值范围,
(1)根据题意,利用分类讨论的数学思想可以解答本题.
【详解】
解:(1)∵C市运往B市x吨,
∴C市运往A市(240﹣x)吨,D市运往B市(100﹣x)吨,D市运往A市260﹣(100﹣x)=(x﹣40)吨,
故答案为:240﹣x、x﹣40、260﹣x;
(2)由题意可得,
W=20(240﹣x)+25x+15(x﹣40)+10(100﹣x)=﹣10x+11200,
由,
解得40≤x≤240,
(1)由题意可得,
W=20(240﹣x)+(25﹣n)x+15(x﹣40)+10(100﹣x)=﹣(n+10)x+11200,
∵n>0
∴﹣(n+10)<0,
W随x的增大而减小,
当x取最大值240时,W最小值=﹣(n+10)×240+11200,
即﹣(n+10)x+11200≥10080,
解得n≤1,
∴0<n≤1.
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
17、(1)y=5x+3600;(2)共有5种生产方案;(3)当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
【解析】
(1)根据题意,根据总利润=型号的总利润+型号的总利润,即可求出(元)与(套)的函数关系式;
(2)根据A、B两种布料的总长列出不等式,即可求出x的取值范围,从而求出各个方案;
(3)一次函数的增减性,求最值即可.
【详解】
解:(1)由题意可知:y=50x+45(80-x)=5x+3600
即(元)与(套)的函数关系式为y=5x+3600;
(2)由题意可知:
解得:
故可生产型号的时装40套、生产型号的时装80-40=40套或生产型号的时装41套、生产型号的时装80-41=39套或生产型号的时装42套、生产型号的时装80-42=38套或生产型号的时装43套、生产型号的时装80-43=37套或生产型号的时装44套、生产型号的时装80-44=36套,共5种生产方案
答:共有5种生产方案.
(3)∵一次函数y=5x+3600中,,5>0
∴y随x的增大而增大
∴当x=44时,y取最大值,ymax=44×5+3600=3820
即当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
答: 当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
此题考查的是一次函数的应用和一元一次不等式组的应用,掌握实际问题中的等量关系、不等关系和一次函数的增减性是解决此题的关键.
18、公里
【解析】
先过点C向AB作垂线,构造直角三角形,利用60°和45°特殊角,表示出相关线段,利用已知CB长度为10公里,建立方程,解出这些相关线段,从而求得A、C两地的距离.
【详解】
解:如图,过点作于点,
则,,,
在中,
,
,
,
,
由勾股定理可得:,
在中,
,
、两地间的距离为公里.
本题主要考查了勾股定理应用题,正确构造直角三角形,然后利用特殊角表示相关线段,从而求解是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (5,)
【解析】
由题知从正方形变换到平行四边形时,边的长度没变,从而求出即可
【详解】
由题知从正方形变换到平行四边形时,A D’=AD=BC=4,D’C’=AB=5,
∵AO=2,根据勾股定理,则O D’=,则D’( 0,),故C’的坐标为(5,)
熟练掌握图形变化中的不变边和勾股定理计算是解决本题的关键
20、-1
【解析】
根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.
【详解】
∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,
∴m+n=﹣2,mn=﹣1,
则m+n+mn=﹣2﹣1=﹣1.
故答案为:﹣1.
本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
21、x>1
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
∵解不等式x-1≥0得:x≥1,
解不等式4-1x<0得:x>1,
∴不等式组的解集为x>1,
故答案是:x>1.
考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
22、x<.
【解析】
先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.
【详解】
∵点A(m,3)在函数y=2x的图象上,
∴3=2m,解得m=,
∴A(,3),
由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,
∴不等式2x<ax+5的解集为:x<.
23、1
【解析】
利用m是方程x2﹣2018x+1=0的一个根得到m2=2018m﹣1,m2+1=2018m,利用整体代入的方法得到原式=m++2,然后通分后再利用整体代入的方法计算.
【详解】
解:∵m是方程x2﹣2018x+1=0的一个根,
∴m2﹣2018m+1=0,
∴m2=2018m﹣1,m2+1=2018m,
∴m2﹣2017m++3=2018m﹣1﹣2017m++3
=m++2
=+2
=+2
=2018+2
=1.
故答案为:1.
本题考查一元二次方程的解得定义,代数式求值,分式的加减.掌握整体思想,整体代入是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)或.
【解析】
(1)对题目中的函数解析式进行变形即可求得点的坐标;
(2)根据题意可以得到相应的不等式组,从而可以求得的取值范围;
(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得的取值范围.
【详解】
(1),
当时,,即为点;
(2)点、坐标分别为、,直线与线段相交,
直线恒过某一定点,
,
解得,;
(3)当时,直线中,随的增大而增大,
当时,,
以、、为长度的3条线段能围成三角形,
,得,
;
当时,直线中,随的增大而减小,
当时,,
以、、为长度的3条线段能围成三角形,
,得,
,
由上可得,或.
本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.
25、 (1)1秒后PQ的长度等于5 cm;(1)△PQB的面积不能等于8 cm1.
【解析】
(1)根据PQ=5,利用勾股定理BP1+BQ1=PQ1,求出即可;
(1)通过判定得到的方程的根的判别式即可判定能否达到8cm1.
【详解】
解:(1)根据题意,得BP=(5-x),BQ=1x.
当PQ=5时,在Rt△PBQ中,BP1+BQ1=PQ1,
∴(5-x)1+(1x)1=51,
5x1-10x=0,
5x(x-1)=0,
x1=0(舍去),x1=1,
答:1秒后PQ的长度等于5 cm.
(1)设经过x秒以后,△PBQ面积为8,
×(5-x)×1x=8.
整理得x1-5x+8=0,
Δ=15-31=-7
相关试卷
这是一份2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡新吴区九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省湘潭市数学九年级第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。