2024-2025学年山东省济宁市鲁桥一中学数学九上开学学业质量监测模拟试题【含答案】
展开
这是一份2024-2025学年山东省济宁市鲁桥一中学数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若从边形的一个顶点出发,最多可以作3条对角线,则该边形的内角和是( )
A.B.C.D.
2、(4分)如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为( )
A.1B.C.2D.
3、(4分)如图,O为坐标原点,菱形OABC的顶点A的坐标为,顶点C在轴的负半轴上,函数的图象经过顶点B,则的值为( )
A.B.C.D.
4、(4分)如图,在△ABC中,DE∥BC,若=,则的值为( )
A.B.C.D.
5、(4分)关于一组数据:1,5,6,3,5,下列说法错误的是( )
A.平均数是4B.众数是5C.中位数是6D.方差是3.2
6、(4分)直线上两点的坐标分别是,,则这条直线所对应的一次函数的解析式为( )
A.B.C.D.
7、(4分)若实数a,b,c满足,且,则函数的图象一定不经过
A.第四象限B.第三象限C.第二象限D.第一象限
8、(4分)下列运算错误的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.
10、(4分)如图,,是反比例函数图像上的两点,过点作轴,过点作轴,交点为,连接,.若的面积为2,则的面积为______.
11、(4分)写出一个图象经过点(1,﹣2)的函数的表达式:_____.
12、(4分)约分:=_________.
13、(4分)由作图可知直线与互相平行,则方程组的解的情况为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.
(1)这次共调查了多少名学生?扇形图中的、值分别是多少?
(2)补全频数分布直方图;
(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:
根据调查结果估计该校有多少学生在光线较暗的环境下学习?
15、(8分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.
(1)已知点,,________;
(2)表示点和点之间的距离;
(3)请借助图形,求的最小值.
16、(8分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD.
求证:四边形ABDF是平行四边形.
17、(10分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.
(1)求该厂今年产量的月平均増长率为多少?
(2)预计月份的产量为多少万台?
18、(10分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.
(1)请根据图中信息,补齐下面的表格;
(2)从图中看,小明与小亮哪次的成绩最好?
(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,如果矩形的面积为1,那么阴影部分的面积是_____.
20、(4分)已知一次函数,那么__________
21、(4分)将直线向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第_________象限.
22、(4分)已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.
23、(4分)如图,的对角线,交于点,点是的中点,若,则的长是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD中,点E为AB边上一点,请你用无刻度的直尺,在CD边上画出点 F,使四边形AECF为平行四边形,并说明理由.
25、(10分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)
26、(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1 cm/s的速度向点D运动,点P从点B出发以2 cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)
(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)
(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=3,求出n的值,最后根据多边形内角和公式可得结论.
【详解】
由题意得:n-3=3,解得n=6,
则该n边形的内角和是:(6-2)×180°=720°,
故选B.
本题考查了多边形的对角线和多边形的内角和公式,熟记n边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.
2、C
【解析】
首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S= ,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.
【详解】
解:根据反比例函数得对称性可知:
OB=OD,AB=CD,
∵ 四边形ABCD的面积等于,
又
∴S四边形ABCD=2.
故答案选:C.
本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.
3、C
【解析】
∵A(﹣3,4),
∴OA==5,
∵四边形OABC是菱形,
∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,
故B的坐标为:(﹣8,4),
将点B的坐标代入得,4=,解得:k=﹣1.故选C.
考点:菱形的性质;反比例函数图象上点的坐标特征.
4、D
【解析】
利用相似三角形的面积比等于相似比的平方解答.
【详解】
解:∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:D.
本题考查了相似三角形的面积比等于相似比的平方这一知识点,熟知这条知识点是解题的关键.
5、C
【解析】
解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;
B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;
C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;
D.这组数据的方差是: [(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;
故选C.
考点:方差;算术平均数;中位数;众数.
6、A
【解析】
利用待定系数法求函数解析式.
【详解】
解:∵直线y=kx+b经过点P(-20,5),Q(10,20),
∴ ,
解得,
所以,直线解析式为.
故选:A.
本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.
7、C
【解析】
先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.
【详解】
解:,且,
,,的正负情况不能确定,
,
函数的图象与y轴负半轴相交,
,
函数的图象经过第一、三、四象限.
故选C.
本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.
8、C
【解析】
根据二次根的运算法则对选项进行判断即可
【详解】
A. ,所以本选项正确
B. ,所以本选项正确
C. ,不是同类二次根式,不能合并,故本选项错误
D. ,所以本选项正确
故选C.
本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5.
【解析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:将这组数据按从小到大的顺序排列是:1,4,4,6,7,10,位于最中是的两个数是4和6,因此中位数为(4+6)÷2=5.
故答案为5.
本题考查了中位数的含义及计算方法.
10、1
【解析】
设A(m,),B(n,),根据题意可得AP=,且A点到y轴的距离为m,依据已知△AOP的面积为2,得到m和n的关系式n=3m,计算△ABP面积=AP×BP,即可得到结果.
【详解】
解:设A(m,),B(n,),
根据题意可得AP=,且A点到y轴的距离为m,
则AP×m=()×m=2,整理得,
所以n=3m,B点坐标可以表示为(3m,)
△ABP面积=AP×BP=()×(3m−m)=1.
故答案为1.
本题主要考查了反比例函数图象上点的坐标特征,解决此类型问题,一般设某个点坐标为(x,),然后用横纵坐标的绝对值表示线段的长度.
11、
【解析】
设y=kx,把点(1,﹣2)代入即可(答案不唯一).
【详解】
设y=kx,把点(1,﹣2)代入,得
k=-2,
∴(答案不唯一).
故答案为:.
本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
12、.
【解析】
由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
【详解】
解:原式=,
故答案为:.
本题考查约分,正确找出公因式是解题的关键.
13、无解
【解析】
二元一次方程组的解,就是两个函数图象的交点坐标,当两函数图象平行时,两个函数无交点,因此解析式所组成的方程组无解.
【详解】
∵直线y=-5x+2与y=-5x-3互相平行,
∴方程组无解,
故答案为:无解.
此题主要考查了一次函数与二元一次方程组的关系,关键是掌握二元一次方程组的解,就是两个函数图象的交点.
三、解答题(本大题共5个小题,共48分)
14、(1)200名,a=18%,b=20%;(2)见解析;(3)270名
【解析】
(1)根据第四组的频数与其所占的百分比求出被调查的学生数.
(2)根据各组所占的百分比分别计算他们的频数,从而补全频数分布直方图.
(3)首先计算各组在光线较暗的环境下学习的学生数,再根据被抽取的学生数所占的比例进行估算该校有多少学生在光线较暗的环境下学习.
【详解】
(1)这次共调查的学生为:(名).
..
(2)0.35~0.65的频数为:;0.95~1.25的频数为:.
补全频数分布直方图如下:
(3)各组在光线较暗的环境下学习的学生总数为:
(名).
该校学生在光线较暗的环境下学习的有:(名).
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15、(1);(2),,;(3)最小值是.
【解析】
(1)根据两点之间的距离公式即可得到答案;
(2)根据表示点与点之间的距离,可以得到A、B两点的坐标;
(3)根据两点之间的距离公式,再结合图形,通过化简可以得到答案;
【详解】
解:(1)根据两点之间的距离公式得:,
故答案为:.
(2)根据表示点与点之间的距离,
∴表示点和点之间的距离,
∴
故答案为:b,-6,1.
(3)解:
如图1,表示的长,
根据两点之间线段最短知
如图2,
∴的最小值是.
本题考查了坐标平面内两点之间的距离公式,以及平面内两点之间的最短距离,解题的关键是注意审题,会用数形结合的解题方法.
16、证明见解析.
【解析】
先由SSS证明△ABC≌△DFE,再根据全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF和AB=DF,即可得出结论.
【详解】
解:∵BE=FC
∴BE+EC=FC+EC
∴BC=FE
在△ABC和△DFE中,
,
∴△ABC≌△DFE,
∴∠ABC=∠DFE
∴AB∥DF,又AB=DF
∴四边形ABDF是平行四边形
本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
17、(1)20%;(2)8.64万台.
【解析】
试题分析:
(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2
,解方程即可得到所求答案;
(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.
试题解析:
(1)设该厂今年产量的月平均增长率是x,根据题意得:
5(1+x)2﹣5(1+x)=1.2
解得:x=﹣1.2(舍去),x=0.2=20%.
答:该厂今年的产量的月增长率为20%;
(2)7月份的产量为:5(1+20%)3=8.64(万台).
答:预计7月份的产量为8.64万台.
18、(1)见解析;(2)小明第4次成绩最好,小亮第3次成绩最好;(3)小明平均数:13.3,方差为:0.004;小亮平均数为:13.3,方差为:0.02;建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.
【解析】
(1)、(2),根据图形,分别找出小明第4次成绩和小亮第2次的成绩,进而补全表格,再结合统计图找出小明和小亮的最好成绩即可;
(3)根据平均数和方差的计算公式分别求出小明和小亮的平均成绩和方差即可.
【详解】
(1)根据统计图补齐表格,如下:
(2)由图可得,小明第4次成绩最好,小亮第3次成绩最好.
(3)小明的平均成绩为: (13.3+13.4+13.3+13.2+13.3)=13.3(秒),
方差为:×[(13.3-13.3)+(13.4-13.3) +(13.3-13.3) +(13.2-13.3) +(13.3-13.3) ]=0.004;
小亮的平均成绩为: (13.2+13.4+13.1+13.5+13.3)÷5=13.3(秒),
方差为×[(13.2-13.3) +(13.4-13.3) +(13.1-13.3) +(13.5-13.3) +(13.3-13.3) ]=0.02.
从平均数看,两人的平均水平相等;从方差看,小明的成绩较稳定,小亮的成绩波动较大.建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.
此题考查折线统计图,方差,算术平均数,解题关键在于掌握运算法则,看懂图中数据
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:阴影面积是矩形ABCD的.用角边角证△EOB≌△DOF,图中阴影面积其实就是△AOB的面积;因为矩形对角线相等且平分,所以很容易得出△AOB面积是矩形面积的3/3.
考点:3.矩形性质;3.三角形全等.
20、—1
【解析】
将x=−2代入计算即可.
【详解】
当x=−2时,f(−2)=3×(−2)+2=−1.
故答案为:−1.
本题主要考查的是求函数值,将x的值代入解析式解题的关键.
21、四
【解析】
根据一次函数图象的平移规律,可得答案.
【详解】
解:由题意得:平移后的解析式为:,即,
直线经过一、二、三象限,不经过第四象限,
故答案为:四.
本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时的值不变.
22、14
【解析】
根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.
【详解】
解:∵的面积为
∴=
解得=2
根据勾股定理得:==7
则代数式==2×7=14
故答案为:14
本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.
23、3
【解析】
先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
【详解】
∵▱ABCD的对角线AC、BD相交于点O,
∴OB=OD,AD=BC=6
∵点E是CD的中点,
∴CE=DE,
∴OE是△BCD的中位线,
∵AD=6,
∴OE=AD=3.
故答案为:3
此题考查平行四边形的性质,解题关键在于利用OE是△BCD的中位线
二、解答题(本大题共3个小题,共30分)
24、见详解.
【解析】
连接AC、BD交于点O,连接EO并延长交CD于点F;由平行四边形的性质得出AB∥CD,OA=OC,证明△AEO≌△CFO,得出AE=CF,即可得出结论.
【详解】
解:连接AC、BD交于点O,连接EO并延长交CD于点F;
则四边形AECF为平行四边形;理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD,OA=OC,
∴∠EAO=∠FCO,
在△AEO和△CFO中, ,
∴△AEO≌△CFO(ASA),
∴AE=CF,
又∵AE∥CF,
∴四边形AECF为平行四边形.
本题考查平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
25、详见解析
【解析】
作∠DAB=∠ ,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.
【详解】
如图所示.
本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
26、(1)=,=;(2);(3)当或时是等腰三角形.
【解析】
试题分析:(1)根据AD、BC的值和点Q的速度是1cm/s,点P的速度是2cm/s,直接用t表示出QD、CP的值;(2)四边形是平行四边形,则需,可得方程8-t=10-2t,再解方程即可;(3)分两种情况讨论:①,②,根据这两种情况分别求出t值即可.
试题解析:解:(1)=,=;
(2)若四边形是平行四边形,则需
∴
解得
(3)①若,如图1, 过作于
则,
∵
∴解得
②若,如图2,过作于
则,
即解得
综上所述,当或时是等腰三角形
考点:四边形、三角形综合题;几何动点问题.
题号
一
二
三
四
五
总分
得分
批阅人
视力
0.35~0.65
0.65~0.95
0.95~1.25
1.25~l.55
比例
相关试卷
这是一份2024-2025学年山东省济宁市兖州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省济宁市十五中学数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省东明县数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。