终身会员
搜索
    上传资料 赚现金

    2024-2025学年山东省莱芜市数学九上开学考试试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年山东省莱芜市数学九上开学考试试题【含答案】第1页
    2024-2025学年山东省莱芜市数学九上开学考试试题【含答案】第2页
    2024-2025学年山东省莱芜市数学九上开学考试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省莱芜市数学九上开学考试试题【含答案】

    展开

    这是一份2024-2025学年山东省莱芜市数学九上开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在中,,,的对边分别是a,b,c,下列条件中,不能判定是直角三角形的是( )
    A.B.
    C.,,D.
    2、(4分)已知,则的值为( )
    A.B.-2C.D.2
    3、(4分)若分式的值为零,则()
    A.B.C.D.
    4、(4分)下列各式成立的是( )
    A.B.C.D.
    5、(4分)不等式组的整数解有三个,则a的取值范围是( )
    A.﹣1≤a<0B.﹣1<a≤0C.﹣1≤a≤0D.﹣1<a<0
    6、(4分)一次函数与的图像在同一坐标系中的图象大致是( )
    A.B.
    C.D.
    7、(4分)反比例函数y=在第一象限的图象如图所示,则k的值可能是( )
    A.1B.2C.3D.4
    8、(4分)函数中自变量x的取值范围是( )
    A.B.且C.x<2且D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若多项式,则=_______________.
    10、(4分)方程的解是 .
    11、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.
    12、(4分)如图,中,是延长线上一点,,连接交于点,若平分,,则________.
    13、(4分)如图,在中,,点、、分别为、、的中点,若,则_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程:
    (1)9x2=(x﹣1)2
    (2)x2﹣2x﹣=0
    15、(8分)解下列一元二次方程
    (1)
    (2)
    16、(8分)如图,一次函数的图象与反比例函数的图象交于点和点.
    (1)求,的值;
    (2)根据图象判断,当不等式成立时,的取值范围是什么?
    17、(10分)张老师打算在小明和小白两位同学之间选一位同学参加数学竞赛,他收集了小明、小白近期10次数学考试成绩,并绘制了折线统计图(如图所示)
    (1)根据折线统计图,张老师绘制了不完整的统计表,请你补充完整统计表;
    (2)你认为张老师会选择哪位同学参加比赛?并说明你的理由
    18、(10分)如图,反比例函数 y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
    (1)求反比例函数与一次函数的函数关系式;
    (2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;
    (3)连接AO、BO,求△ABO的面积;
    (4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)关于的方程有实数根,则的取值范围是_________.
    20、(4分)已知:函数,,若,则__________(填“”或“”或 “”).
    21、(4分)如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.
    22、(4分)如图,在矩形中,,,点是边上一点,若平分,则的面积为________.
    23、(4分)已知菱形一内角为,且平分这个内角的一条对角线长为8,则该菱形的边长__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.
    (1) ①依题意补全图形;②求证:BE⊥AC.
    (2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为 (直接写出答案).
    25、(10分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.
    (1)请填写下表:
    (2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
    (3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)
    26、(12分)矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA.
    (1)求证:四边形AFCE是菱形;
    (2)若AB=8,BC=4,求菱形AFCE的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据三角形内角和定理以及直角三角形的性质即可求出答案.
    【详解】
    A. ∵,,∴∠C=90°, ∴是直角三角形,故能确定;
    B. ,,∴∠C=90°, ∴是直角三角形,故能确定;
    C. ∵, ∴是直角三角形,故能确定;
    D.设a=1,b=2,c=2,
    ∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.
    故选:D.
    本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.
    2、C
    【解析】
    首先根据x的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.
    【详解】
    ∵,
    ∴x−3<0,x−2<0,
    ∴=3−x+(2−x)=5−2x.
    故选:C.
    本题主要考查了二次根式的化简,化简时要注意二次根式的性质:=|a|.
    3、D
    【解析】
    分式的值为零:分子为零,且分母不为零.
    【详解】
    解:根据题意,得
    x+3=1,x﹣2≠1,
    解得,x=﹣3,x≠2;
    故选:D.
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
    4、D
    【解析】
    直接利用二次根式的性质分别化简得出答案.
    【详解】
    解:A、,故此选项错误;
    B、,故此选项错误;
    C、,故此选项错误;
    D、,正确.
    故选:D.
    此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
    5、B
    【解析】
    根据不等式组的整数解有三个,确定出a的范围即可.
    【详解】
    ∵不等式组的整数解有三个,
    ∴这三个整数解为2、1、0,
    则﹣1<a≤0,
    故选:B.
    此题考查了一元一次不等式组的整数解,表示出不等式组的解集是解本题的关键.
    6、D
    【解析】
    按照当k、b为正数或负数逐次选择即可.
    【详解】
    解:当k>0,b>0时,过一二三象限,也过一二三象限,各选项都不符合;
    当k<0,b<0时,过二三四象限,也过二三四象限,各选项都不符合;
    当k>0,b<0,过一三四象限,过一二四象限,图中D符合条件,
    故选:D.
    本题考查的是一次函数的图象,解题的关键是熟知k、b在图象上代表的意义.
    7、C
    【解析】
    如图,当x=2时,y=,
    ∵1<y<2,
    ∴1<<2,
    解得2<k<4,
    所以k=1.
    故选C.
    8、B
    【解析】
    由已知得:且,
    解得:且.
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    利用多项式乘法去括号,根据对应项的系数相等即可求解.
    【详解】

    ∴,
    故答案为:-1.
    本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.
    10、
    【解析】
    解:,.
    11、3或6
    【解析】
    先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.
    【详解】
    解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,
    ∴∠DBC=∠BAO,
    由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,
    ∵点C(0,6),
    ∴OC=6,
    ∴BC=6-b,
    在△DBC和△BAO中,
    ∴△DBC≌△BAO(AAS),
    ∴BC=OA,
    即6-b=b,
    ∴b=3;
    ②当∠ADB=90°时,如图2,作AF⊥CE于F,
    同理证得△BDC≌△DAF,
    ∴CD=AF=6,BC=DF,
    ∵OB=b,OA=b,
    ∴BC=DF=b-6,
    ∵BC=6-b,
    ∴6-b=b-6,
    ∴b=6;
    ③当∠DAB=90°时,如图3,
    作DF⊥OA于F,
    同理证得△AOB≌△DFA,
    ∴OA=DF,
    ∴b=6;
    综上,b的值为3或6,
    故答案为3或6.
    本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.
    12、1
    【解析】
    平行四边形的对边平行,AD∥BC,AB=AE,所以BC=2AF,根据CF平分∠BCD,可证明AE=AF,从而可求出结果.
    【详解】
    解:∵CF平分∠BCD,
    ∴∠BCE=∠DCF,
    ∵AD∥BC,
    ∴∠BCE=∠DFC,
    ∴∠BCE=∠EFA,
    ∵BE∥CD,
    ∴∠E=∠DCF,
    ∴∠E=∠BCE,
    ∵AD∥BC,
    ∴∠BCE=∠EFA,
    ∴∠E=∠EFA,
    ∴AE=AF=AB=5,
    ∵AB=AE,AF∥BC,
    ∴△AEF∽△BEC,
    ∴,
    ∴BC=2AF=1.
    故答案为:1.
    本题考查平行四边形的性质和相似三角形的判定和性质,平行四边形的对边平行,以等腰三角形的判定和性质.
    13、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.
    【详解】
    解:∵∠ACB=90°,点D为AB的中点,
    ∴AB=2CD=16,
    ∵点E、F分别为AC、BC的中点,
    ∴EF=AB=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2),.
    【解析】
    (1)利用因式分解法即可解答
    (2)先将分数化为整数,再利用判别式进行计算即可
    【详解】
    (1)

    则,
    故,
    解得:,;
    (2)
    则,
    △,
    则,
    解得:,.
    此题考查解一元二次方程-因式分解法和判别式,掌握运算法则是解题关键
    15、(1),;(2),.
    【解析】
    (1)将方程左边因式分解,继而求解可得;
    (2)运用配方法求解即可.
    【详解】
    (1)∵(x+3)(x+7)=0,
    ∴x+3=0或x+7=0,
    解得:,;
    (2)



    ∴ .
    本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键
    16、(1), ;(2)或.
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)观察图象写出反比例函数图象在一次函数的图象上方的x的取值范围即可.
    【详解】
    解:(1)把A(1,1)代入中,得到m=1,
    ∴反比例函数的解析式为y=,
    把B(n,1)代入y=中,得到n=1;
    (2)∵A(1,1),B(1,1),
    观察图象可知:不等式成立时,x的取值范围是0<x≤1或x≥1.
    本题考查一次函数与反比例函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会利用图象法解决取值范围问题,属于中考常考题型.
    17、 (1)90,90,100;85,145;(2) 选择小明同学,理由见解析.
    【解析】
    (1)先根据折线统计图得出两人的成绩,再根据众数、中位数、平均数和方差的定义计算可得;
    (2)根据众数、中位数、平均数和方差的意义解答,合理即可得.
    【详解】
    .解:(1)小明同学的成绩为:70、70、80、80、90、90、90、90、90、100,
    所以小明成绩的众数为90、中位数为90、最高分为100;
    小白同学的成绩为:70、70、70、80、80、90、90、100、100、100,
    所以小白同学成绩的平均数为 =85,
    则方差为×[3×(70﹣85)2+2×(80﹣85)2+2×(90﹣85)2+3×(100﹣85)2]=145,
    补全表格如下:
    (2)选择小明同学,
    ∵小明、小白的平均成绩相同,而小明成绩的方差较小,发挥比较稳定,
    ∴选择小明同学参加比赛.
    此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    18、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    【解析】
    (1)利用待定系数法求得一次函数与反比例函数的解析式;
    (2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
    (1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
    (3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.
    【详解】
    解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
    ∵B(n,-1)在y=的图象上,
    ∴n=-1.
    ∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
    ∴,
    解得m=1,b=2.
    ∴两函数关系式分别是:y=和y=x+2.
    (2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
    (1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
    ∵A(1,1),B(-1,-1)
    ∴S△DBO=×1×2=1,S△DAO=×1×2=1
    ∴S△ABO=S△DBO+S△DAO=3.
    (3)OA= = ,
    O是△AOP顶角的顶点时,OP=OA,则P(0,- )或P(0,),
    A是△AOP顶角的顶点时,由图象得, P(0,6),
    OA是底边,P是△AOP顶角的顶点时,
    设 P(0,x),分别过A、P作AN⊥x轴于N,PM⊥AN于M,
    则AP=OP=x,PM=1,AM=1-x,
    在Rt△APM中, 即
    解得x= ,
    ∴P(0,).
    故答案为:(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    本题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同时在求解面积时,要巧妙地利用分割法,将面积分解为两部分之和.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、k≤2
    【解析】
    当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.
    【详解】
    当k-1=0,即k=1时,方程为2x+1=0,
    解得x=-,符合题意;
    ②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,
    解得:k≤2且k≠1.
    综上即可得出k的取值范围为k≤2.
    故答案为k≤2.
    本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.
    20、<
    【解析】
    联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.
    【详解】
    根据题意联立方程组得,
    解得,,
    画函数图象得,
    所以,当,则<.
    故答案为:<.
    本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.
    21、x≥2
    【解析】
    根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.
    【详解】
    解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.
    本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.
    22、1
    【解析】
    首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD∥BC,AD=BC=5,CD=AB=3,
    ∴∠CED=∠ADE,
    ∵ED平分∠AEC,
    ∴∠AED=∠CED,
    ∴∠EDA=∠AED,
    ∴AD=AE=5,
    ∴BE=,
    ∴△ABE的面积=BE•AB=×4×3=1;
    故答案为:1.
    本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.
    23、8
    【解析】
    根据已知可得该对角线与菱形的一组邻边构成一个等边三角形,从而可求得菱形的边长.
    【详解】
    菱形的一个内角为120°,则邻角为60°
    则这条对角线和一组邻边组成等边三角形,
    可得边长为8cm.
    故答案为8.
    此题考查菱形的性质,对角线与菱形的一组邻边构成一个等边三角形是解题关键
    二、解答题(本大题共3个小题,共30分)
    24、(1)①见解析;②见解析;(2)
    【解析】
    (1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;
    (2)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.
    【详解】
    (1)①依题意补全图形,如图1所示.
    ②证明:连接CE,如图2所示.
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,AB=BC,
    ∴∠ACB=∠ACD=∠BCD=45°,
    ∵∠CMN=90°,CM=MN,
    ∴∠MCN=45°,
    ∴∠ACN=∠ACD+∠MCN=90°.
    ∵在Rt△ACN中,点E是AN中点,
    ∴AE=CE=AN.
    ∵AE=CE,AB=CB,
    ∴点B,E在AC的垂直平分线上,
    ∴BE垂直平分AC,
    ∴BE⊥AC.
    (2)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.
    ∵∠BDC=45°,∠DCN=45°,
    ∴BD∥CN,
    ∴四边形DFCN为梯形.
    ∵AB=1,
    ∴CF=DF=BD=,CN=,
    ∴S梯形DFCN=(DF+CN)•CF=(+)×=.
    故答案为:.
    此题考查正方形的性质,等腰直角三角形的性质,平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.根据题意画出图形,利用数形结合解决问题是关键.
    25、(1)见解析;(2)甲的成绩比乙稳定;(1)见解析
    【解析】
    (1)根据中位数、平均数的概念计算;
    (2)从平均数和方差相结合看,方差越小的越成绩越好;
    (1)根据题意,从平均数,中位数两方面分析即可.
    【详解】
    解:(1) :(1)通过折线图可知:
    甲的环数按从小到大排列是5、6、6、7、7、7、7、8、8、9,
    则数据的中位数是(7+7)÷2=7;
    的平均数=(2+4+6+7+8+7+8+9+9+10)=7;
    乙命中9环以上的次数(包括9环)为1.
    填表如下:
    (2)因为平均数相同,
    所以甲的成绩比乙稳定.
    (1)理由1:因为平均数相同,命中9环以上的次数甲比乙少,所以乙的成绩比甲好些;
    理由2:因为平均数相同,甲的中位数小于乙的中位数,所以乙的成绩比甲好些;
    理由1:甲的成绩在平均数上下波动;而乙处于上升势头,从第4次以后就没有比甲少的情况发生,乙较有潜力.
    本题考查了折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了中位数、平均数和方差的概念.在实际生活中常常用它们分析问题.
    26、(1)证明见解析;(2)1.
    【解析】
    分析:(1)先证明四边形AFCE是平行四边形,再证明FA=FC,根据有一组邻边相等的平行四边形是菱形得出结论;
    (2)设DE=x,则AE=EC=8-x,在Rt△ADE中,由勾股定理列方程求得x的值,再求菱形的面积即可.
    详解:(1)∵四边形ABCD是矩形,
    ∴DC∥AB,DC=AB,
    ∵DE=BF,
    ∴EC=AF,
    而EC∥AF,
    ∴四边形AFCE是平行四边形,
    由DC∥AB可得∠ECA=∠FAC,
    ∵∠ECA=∠FCA,
    ∴∠FAC=∠FCA,
    ∴FA=FC,
    ∴平行四边形AFCE是菱形;
    (2)解:设DE=x,则AE=EC=8-x,
    在Rt△ADE中,由勾股定理得
    42+x2=(8-x)2,
    解得x=3,
    ∴菱形的边长EC=8-3=5,
    ∴菱形AFCE的面积为:4×5=1.
    点睛:本题考查了矩形的性质、菱形的性质和判定、菱形的面积、勾股定理.此题难度不大,注意掌握数形结合思想的应用.
    题号





    总分
    得分
    批阅人
    项目
    众数
    中位数
    平均数
    方差
    最高分
    小明
    85
    85
    小白
    70,100
    85
    100
    平均数
    方差
    中位数
    命中9环以上的次数(包括9环)

    7
    1.2
    1

    5.4
    7.5
    项目
    众数
    中位数
    平均数
    方差
    最高分
    小明
    90
    90
    85
    85
    100
    小白
    70,100
    85
    85
    145
    100
    平均数
    方差
    中位数
    命中9环以上的次数(包括9环)

    7
    1.2
    7
    1

    7
    5.4
    7.5
    1

    相关试卷

    2024-2025学年山东省聊城莘县联考九上数学开学调研试题【含答案】:

    这是一份2024-2025学年山东省聊城莘县联考九上数学开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济宁兖州区七校联考九上数学开学考试试题【含答案】:

    这是一份2024-2025学年山东省济宁兖州区七校联考九上数学开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济宁海达行知学校九上数学开学考试模拟试题【含答案】:

    这是一份2024-2025学年山东省济宁海达行知学校九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map