终身会员
搜索
    上传资料 赚现金
    备战2025年高考一轮复习数学百练热点教案第51练等差等比数列综合问题(Word版附解析)
    立即下载
    加入资料篮
    备战2025年高考一轮复习数学百练热点教案第51练等差等比数列综合问题(Word版附解析)01
    备战2025年高考一轮复习数学百练热点教案第51练等差等比数列综合问题(Word版附解析)02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战2025年高考一轮复习数学百练热点教案第51练等差等比数列综合问题(Word版附解析)

    展开
    这是一份备战2025年高考一轮复习数学百练热点教案第51练等差等比数列综合问题(Word版附解析),共5页。教案主要包含了基础知识,典型例题等内容,欢迎下载使用。

    1、等差数列性质与等比数列性质:
    2、等差数列与等比数列的互化:
    (1)若为等差数列,,则成等比数列
    证明:设的公差为,则为一个常数
    所以成等比数列
    (2)若为正项等比数列,,则成等差数列
    证明:设的公比为,则为常数
    所以成等差数列
    二、典型例题:
    例1:已知等比数列中,若成等差数列,则公比( )
    A. B. 或 C. D.
    思路:由“成等差数列”可得:,再由等比数列定义可得:,所以等式变为:解得或,经检验均符合条件
    答案:B
    例2:已知是等差数列,且公差不为零,其前项和是,若成等比数列,则( )
    A. B.
    C. D.
    思路:从“成等比数列”入手可得:,整理后可得:,所以,则,且,所以符合要求
    答案:B
    小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用(或)进行表示,从而得到(或)的关系
    例3:已知等比数列中的各项均为正数,且,则_______________
    思路:由等比数列性质可得:,从而,因为为等比数列,所以为等差数列,求和可用等差数列求和公式:
    答案:
    例4:三个数成等比数列,其乘积为,如果第一个数与第三个数各减,则成等差数列,则这三个数为___________
    思路:可设这三个数为,则有,解得,而第一个数与第三个数各减2,新的等差数列为,所以有:,即,解得或者,时,这三个数为,当时,这三个数为
    答案:
    小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。设为(或),这种“对称”的设法便于充分利用条件中的乘积与和的运算。
    例5:设是等差数列,为等比数列,其公比,且,若,则有( )
    A. B. C. D. 或
    思路:抓住和的序数和与的关系,从而以此为入手点。由等差数列性质出发,,因为,而为等比数列,联想到与有关,所以利用均值不等式可得:(故,均值不等式等号不成立)所以即
    答案:B
    小炼有话说:要熟悉等差数列与等比数列擅长的运算,等差数列擅长加法,等比数列擅长乘积。所以在选择入手点时可根据表达式的运算进行选择。
    例6:数列是各项均为正数的等比数列,是等差数列,且,则有( )
    A. B.
    C. D. 与的大小不确定
    思路:比较大小的式子为和的形式,所以以为入手点,可得,从而作差比较,由为正项等比数列可得:,所以
    答案:B
    小炼有话说:要熟悉等差数列与等比数列擅长的运算,等差数列擅长加法,等比数列擅长乘积。所以在选择入手点时可根据表达式的运算进行选择。
    例7:设数列是以2为首项,1为公差的等差数列,是以1为首项,2为公比的等比数列,则( )
    A. B. C. D.
    思路:求和看通项,考虑,所以,,所以
    答案:A
    例8:(2011,江苏)设,其中成公比为的等比数列,成公差为的等差数列,则的最小值是___________
    思路:可知等比数列为,等差数列为 ,依题意可得①,若要最小,则要达到最小,所以在①中,每一项都要尽量取较小的数,即让不等式中的等号成立。所以,所以,验证当时, ,①式为,满足题意。
    答案:
    例9:已知等差数列的公差,前项和为,等比数列是公比为的正整数,前项和为,若,且是正整数,则等于( )
    A. B. C. D.
    解:本题的通项公式易于求解,由可得,而处理通项公式的关键是要解出,由可得,所以,由,可得,所以可取的值为,可得只有才有符合条件的,即,所以,所以,,则
    答案:D
    例10:个正数排成行列(如表),其中每行数都成等差数列,每列数都成等比数列,且所有的公比都相同,已知,则_______,___________
    思路:本题抓住公比相同,即只需利用一列求出公比便可用于整个数阵,抓住已知中的,可得,从而只要得到某一行的数,即可求得数阵中的每一项 。而第四列即可作为突破口,设每 行的公差为 由可得,从而,所以 。则,求和的通项公式,利用错位相减法可求得:
    答案:
    小炼有话说:对于数阵问题首先可设其中的项为(第行第列),因为数阵中每行每列具备特征,所以可将其中一行或一列作为突破口,求得通项公式或者关键量,然后再以该行(或该列)为起点拓展到其他的行与列,从而得到整个数阵的通项公式等差数列
    等比数列
    递推公式
    通项公式
    等差(比)中项
    等间隔抽项
    仍构成等差数列
    仍构成等比数列
    相邻项和
    成等差数列
    成等比数列
    相关教案

    新高考数学一轮复习精品教案第15讲 等差数列、等比数列综合运用(含解析): 这是一份新高考数学一轮复习精品教案第15讲 等差数列、等比数列综合运用(含解析),共27页。教案主要包含了知识点总结,典型例题,技能提升训练等内容,欢迎下载使用。

    新高考数学一轮复习精品教案第14讲 等差数列、等比数列基本量(含解析): 这是一份新高考数学一轮复习精品教案第14讲 等差数列、等比数列基本量(含解析),共41页。教案主要包含了知识点总结,典型例题,技能提升训练等内容,欢迎下载使用。

    新高考数学一轮复习讲练教案10.6 概率与统计的综合问题(含解析): 这是一份新高考数学一轮复习讲练教案10.6 概率与统计的综合问题(含解析),共15页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map