搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年山东省齐河、夏津、临邑、禹城、武城五县九年级数学第一学期开学复习检测试题【含答案】

    2024-2025学年山东省齐河、夏津、临邑、禹城、武城五县九年级数学第一学期开学复习检测试题【含答案】第1页
    2024-2025学年山东省齐河、夏津、临邑、禹城、武城五县九年级数学第一学期开学复习检测试题【含答案】第2页
    2024-2025学年山东省齐河、夏津、临邑、禹城、武城五县九年级数学第一学期开学复习检测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省齐河、夏津、临邑、禹城、武城五县九年级数学第一学期开学复习检测试题【含答案】

    展开

    这是一份2024-2025学年山东省齐河、夏津、临邑、禹城、武城五县九年级数学第一学期开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
    下面有三个推断:
    ①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
    ②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
    ③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.
    其中合理的是( )
    A.①B.②C.①②D.①③
    2、(4分)如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是( )
    A.130°B.80°C.100°D.50°
    3、(4分)不等式2x﹣1<1的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    4、(4分)如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为, 则乘电梯从点到点上升的高度是( )
    A.B.C.D.
    5、(4分)如图,在△ABC中,AB=4,BC=8,AC=6,D、E分别是BC、CA的中点,则△DEC的周长为( )
    A.18B.8C.10D.9
    6、(4分)若直线l与直线y=2x﹣3关于y轴对称,则直线l的解析式是( )
    A.y=﹣2x+3B.y=﹣2x﹣3C.y=2x+3D.y=2x﹣3
    7、(4分)如图,一次函数与一次函数的图象交于点,则关于的不等式的解集是( )
    A.B.C.D.
    8、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是( )
    A.AB∥CD,AD=BCB.AB=CD,AB∥CD
    C.AB=CD,AD=BCD.AC与BD互相平分
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图的直角三角形中未知边的长x=_______.
    10、(4分)若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是 .
    11、(4分)若y=,则x+y= .
    12、(4分)某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.
    13、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.
    (1)如图1,点在上,点在的延长线上,
    求证:=ME,⊥.ME
    简析: 由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE是 三角形,进而得出结论.
    (2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.
    (3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= .
    15、(8分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
    16、(8分)反比例函数的图象经过点点是直线上一个动点,如图所示,设点的横坐标为且满足过点分别作轴,轴,垂足分别为与双曲线分别交于两点,连结.
    (1)求的值并结合图像求出的取值范围;
    (2)在点运动过程中,求线段最短时点的坐标;
    (3)将三角形沿着翻折,点的对应点得到四边形能否为菱形?若能,求出点坐标;若不能,说明理由;
    (4)在点运动过程中使得求出此时的面积.
    17、(10分)如图,点在同一直线上,,,.求证:.
    18、(10分)(1)分解因式:a3-2a2b+ab2;
    (2)解方程:x2+12x+27=0
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示,将长方形纸片ABCD进行折叠,∠FEH=70°,则∠BHE=_______.
    20、(4分)小李掷一枚均匀的硬币次,出现的结果如下:正、反、正、反、反、反、正、正、反、反、反、正,则出现“反面朝上”的频率为______.
    21、(4分)如果点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,那么代数式m-3n+6的值为______.
    22、(4分)如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.
    23、(4分)函数的自变量的取值范围是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解方程:﹣=1
    25、(10分)如图,在中,点对角线上,且,连接。
    求证:(1);
    (2)四边形是平行四边形。
    26、(12分)某学生本学期6次数学考试成绩如下表所示:
    (1)6次考试成绩的中位数为 ,众数为 .
    (2)求该生本学期四次月考的平均成绩.
    (3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.
    【详解】
    解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;
    ②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;
    ③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.
    故选:B.
    本题考查了利用频率估计概率,明确概率的定义是解题的关键.
    2、A
    【解析】
    根据平行四边形的性质即可解答.
    【详解】
    解:在平行四边形ABCD中,
    ∠A+∠C=100°,
    故∠A=∠C=50°,
    且AD∥BC,
    故∠B=180°-50°=130°.
    故答案选A.
    本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.
    3、C
    【解析】
    不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.
    【详解】
    解:不等式移项合并得:2x<2,
    解得:x<1,
    表示在数轴上,如图所示:
    故选C.
    此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.
    4、C
    【解析】
    过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.
    【详解】
    解:过C作CM⊥AB于M,
    ∵∠ABC=150°,
    ∴∠CBM=180°-150°=30°,
    在Rt△CBM中,
    ∵BC=10m,∠CBM=30°,
    ∴=sin∠CBM=sin30°=,
    ∴CM=BC=5m,
    即从点B到点C上升的高度h是5m.
    故选C.
    本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.
    5、D
    【解析】
    根据三角形中位线的性质可得出DE,CD,EC的长度,则△DEC的周长可求.
    【详解】
    ∵D、E分别是BC、CA的中点,
    ∴DE是△ABC的中位线.
    ∵AB=4,BC=8,AC=6,
    ∴DE=AB=2,EC=AC=3,CD=CB=4,
    ∴△DEC的周长=2+3+4=9,
    故选:D.
    本题主要考查三角形中位线,掌握三角形中位线的性质是解题的关键.
    6、B
    【解析】
    利用关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变解答即可。
    【详解】
    解:与直线y=2x﹣1关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变,则
    y=2(﹣x)﹣1,即y=﹣2x﹣1.
    所以直线l的解析式为:y=﹣2x﹣1.
    故选:B.
    本题主要考查了一次函数的图象与几何变换,利用轴对称变换的特点解答是解题关键.
    7、D
    【解析】
    直接利用图象,观察图像可知,要求在的下方,包括交点,就得出不等式x+b<kx+4的解集.
    【详解】
    解:如图所示:
    ∵一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),
    ∴关于的不等式x+bkx+4的解集是:.
    故选择:D.
    此题主要考查了一次函数与一元一次不等式,正确运用数形结合思想是解题关键.
    8、A
    【解析】
    根据平行四边形的判定方法依次判定各项后即可解答.
    【详解】
    选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;
    选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;
    选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形;
    选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.
    故选A.
    本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据勾股定理求解即可.
    【详解】
    x=.
    故答案为:.
    本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
    10、1
    【解析】
    根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出ab.
    解答:解:∵点A(2,a)关于x轴的对称点是B(b,-3),
    ∴a=3,b=2,
    ∴ab=1.
    故答案为1.
    11、1.
    【解析】
    试题解析:∵原二次根式有意义,
    ∴x-3≥0,3-x≥0,
    ∴x=3,y=4,
    ∴x+y=1.
    考点:二次根式有意义的条件.
    12、1
    【解析】
    根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.
    【详解】
    解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.
    当众数为1时,根据题意得(1+1+x+8)÷4=1,
    解得x=12,
    将这组数据从小到大的顺序排列8,1,1,12,
    处于中间位置的是1,1,
    所以这组数据的中位数是(1+1)÷2=1.
    故答案为1
    本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
    13、1或.
    【解析】
    分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.
    【详解】
    在菱形ABCD中,∵∠A=60°,AD=,
    ∴AC=3,
    ①当CG=BC=时,AG=AC=CG=3-,
    ∴AP=AG=.
    ②当GC=GB时,易知GC=1,AG=2,
    ∴AP=AG=1,
    故答案为1或.
    本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题
    三、解答题(本大题共5个小题,共48分)
    14、(1)等腰直角;(2)结论仍成立,见解析;(3)或,.
    【解析】
    (1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;
    (2)结论不变,证明方法类似;
    (3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;
    【详解】
    解:(1) △AMN ≌ △FME ,等腰直角.
    如图1中,延长EM交AD于H.
    ∵四边形ABCD是正方形,四边形EFGC是正方形,
    ∴,,
    ∴,
    ∴,
    ∵,,
    ∴△AMH≌△FME,
    ∴,,
    ∴,
    ∵,
    ∴DM⊥EM,DM=ME.
    (2)结论仍成立.
    如图,延长EM交DA的延长线于点H,
    ∵四边形ABCD与四边形CEFG都是正方形,
    ∴,,
    ∴AD∥EF,∴.
    ∵,,
    ∴△AMF≌△FME(ASA), …
    ∴,,∴.
    在△DHE中,,,,
    ∴,DM⊥EM.
    (3)①当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;
    ②当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时 ,所以 ;
    ③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,
    证明如下:∵四边形ABCD与四边形CEFG都是正方形, 且点E在BC上
    ∴AB//EF,∴,
    ∵M为AF中点,∴AM=MF
    ∵在三角形AHM与三角形EFM中:
    ,
    ∴△AMH≌△FME(ASA),
    ∴,,∴.
    ∵在三角形AHD与三角形DCE中:

    ∴△AHD≌△DCE(SAS),
    ∴,
    ∵∠ADC=∠ADH+∠HDC=90°,
    ∴∠HDE=∠CDE+∠HDC=90°,
    ∵在△DHE中,,,,
    ∴三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中 ,所以
    本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.
    15、见解析.
    【解析】
    利用向量的加法的平行四边形法则即可解决问题.
    【详解】
    如图:
    即为所求.
    本题考查作图-复杂作图,平面向量等知识,解题的关键是熟练掌握向量的加法的平行四边形法则,属于中考常考题型.
    16、(1),,(2),(3)能,,
    (4)
    【解析】
    (1)先把(1,3)代入求出k的值,再由两函数有交点求出m的值,根据函数图象即可得出结论;
    (2)根据线段OC最短可知OC为∠AOB的平分线,对于,令,即可得出C点坐标,把代入中求出的值即可得出P点坐标;
    (3)当OC=OD时,四边形O′COD为菱形,由对称性得到△AOC≌△BOD,即OA=OB,由此时P横纵坐标相等且在直线上即可得出结论.
    (4)设,则,,根据PD=DB,构建方程求出,即可解决问题.
    【详解】
    解:(1)∴反比例函数(x>0,k≠0)的图象进过点(1,3),
    ∴把(1,3)代入,解得,

    ∵ ,
    ∴,

    ∴由图象得:;
    (2)∵线段OC最短时,
    ∴OC为∠AOB的平分线,
    ∵对于,令,
    ∴,即C,
    ∴把代入中,得:,即P;
    (3)四边形O′COD能为菱形,
    ∵当OC=OD时,四边形O′COD为菱形,
    ∴由对称性得到△AOC≌△BOD,即OA=OB,
    ∴此时P横纵坐标相等且在直线上,
    即,解得:,即P.
    (4)设B,则,
    ∵PD=DB,
    ∴,
    解得:(舍弃),
    ∴,D,,,
    本题属于反比例函数综合题,考查的是反比例函数的图像与性质,涉及到菱形的判定与性质、全等三角形的判定与性质等知识,在解答此题时要注意利用数形结合求解.
    17、详见解析
    【解析】
    先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.
    【详解】
    解:证明:,
    ∴△ABC和△DEF都是直角三角形,

    即,
    在Rt△ABC和Rt△DFE中,

    ∴Rt△ABC≌Rt△DFE(HL),
    ∴.
    本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.
    18、a(a-b)2,x=-3或x=-9.
    【解析】
    (1)先提取公因式,在运用公式法因式分解即可。
    (2)运用因式分解法,即可解方程。
    【详解】
    解:(1)a3-2a2b+ab2
    = a(a2-2ab+b2)
    =a(a-b)2
    (2) x2+12x+27=0
    (x+3)(x+9)=27
    即:x+3=0或x+9=0
    解得:x=-3或x=-9
    本题考查了因式分解及其应用,特别是用因式分解解一元二次方程是常用的方法。
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、70°
    【解析】
    由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.
    【详解】
    由题意得∠DEH=∠FEH=70°,
    ∵AD//BC,
    ∴∠BHE=∠DEH=70°,
    故答案为:70°.
    本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.
    20、
    【解析】
    根据题意可知“反面朝上”一共出现7次,再利用概率公式进行计算即可
    【详解】
    “反面朝上”一共出现7次,
    则出现“反面朝上”的频率为
    此题考查频率,解题关键在于掌握频率的计算方法
    21、1
    【解析】
    点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,代入可求出m、n,进而求代数式的值.
    【详解】
    解;把点A(1,m)、B(3,n)代入y=得:m=3,n=1
    ∴m-3n+1=3-3×1+1=1.
    故答案为:1.
    考查反比例函数图象上点的坐标特点,理解函数图象的意义,正确的代入和细心的计算是解决问题的前提.
    22、4+4
    【解析】
    连接EF,点E、F分别是边BC、AD边的中点,可知BE=AF=AB=4,可证四边形ABEF为菱形,根据菱形的性质可知AE⊥BF,且AE与BF互相平分,∠ABC=60°,△ABE为等边三角形,ME=F=4,由勾股定理求MF,根据菱形的性质可证四边形MENF为矩形,再求四边形ENFM的周长.
    解:连接EF,
    ∵点E、F分别是边BC、AD边的中点,
    ∴BE=AF=AB=4,
    又AF∥BE,
    ∴四边形ABEF为菱形,由菱形的性质,得AE⊥BF,且AE与BF互相平分,
    ∵∠ABC=60°,∴△ABE为等边三角形,ME=F=4,
    在Rt△MEF中,由勾股定理,得MF=,
    由菱形的性质,可知四边形MENF为矩形,
    ∴四边形ENFM的周长=2(ME+MF)=4+4.
    故答案为4+4
    23、x>
    【解析】
    根据分式、二次根式有意义的条件,确定x的范围即可.
    【详解】
    依题意有2x-3>2,
    解得x>.
    故该函数的自变量的取值范围是x>.
    故答案为:x>.
    本题考查的知识点为:分式有意义,分母不为2.二次根式有意义,被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+23中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-2.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
    二、解答题(本大题共3个小题,共30分)
    24、x=1.
    【解析】
    分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    原方程可变为:﹣=1,
    方程两边同乘(x﹣2),得1﹣(x﹣1)=x﹣2,
    解得:x=1,
    检验:当x=1时,x﹣2≠0,
    ∴原方程的解为x=1.
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    25、(1)见解析;(2)四边形是平行四边形,见解析.
    【解析】
    (1)根据全等三角形的判定方法SAS,判断出△ADE≌△CBF.
    (2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
    【详解】
    证明:(1)∵四边形是平行四边形,
    ∴,
    ∴,
    在和中,
    ∴(SAS);
    (2)由(1)可得,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,
    ∴四边形是平行四边形.
    此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.
    26、(1)109 , 1.(2)109;(3)110.2
    【解析】
    (1)把6个数从小到大排列,按照中位数、众数的概念即可得出结论;
    (2)把平时测试成绩相加,再求出其平均数即可;
    (3)取4次月考成绩平均分的20%加上期中成绩的30﹪加上期末成绩的50﹪计算即可.
    【详解】
    解:(1)这6个数从小到大排列为:105,1,1,110,112,113,中位数是=109,众数是1.
    故答案为:109,1;
    (2)平时测试的数学平均成绩=(分);
    (3)总评成绩=(分)
    答:该生本学期的数学总评成绩为110.2分。
    本题考查了中位数和众数的定义,熟练的掌握数据的分析和加权平均数的计算方法是解题的关键.
    题号





    总分
    得分
    批阅人
    成绩类别
    第一次月考
    第二次月考
    期中
    第三次月考
    第四次月考
    期末
    成绩/分
    105
    110
    108
    113
    108
    112

    相关试卷

    2023-2024学年山东省齐河、夏津、临邑、禹城、武城五县数学九上期末监测试题含答案:

    这是一份2023-2024学年山东省齐河、夏津、临邑、禹城、武城五县数学九上期末监测试题含答案,共7页。试卷主要包含了若一次函数y=ax+b等内容,欢迎下载使用。

    山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案:

    这是一份山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了抛物线的顶点坐标是,下列命题是真命题的是,若点,,在反比例函数,如图,为线段上一动点等内容,欢迎下载使用。

    山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年八上数学期末综合测试试题含答案:

    这是一份山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年八上数学期末综合测试试题含答案,共8页。试卷主要包含了若分式的值是零,则x的值是,已知,,则,下列命题是假命题的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map