终身会员
搜索
    上传资料 赚现金

    2024-2025学年山东省青岛市青岛实验数学九上开学达标测试试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年山东省青岛市青岛实验数学九上开学达标测试试题【含答案】第1页
    2024-2025学年山东省青岛市青岛实验数学九上开学达标测试试题【含答案】第2页
    2024-2025学年山东省青岛市青岛实验数学九上开学达标测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省青岛市青岛实验数学九上开学达标测试试题【含答案】

    展开

    这是一份2024-2025学年山东省青岛市青岛实验数学九上开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是( )
    A.2B.3C.4D.5
    2、(4分)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是( )
    A.5B.3C.2.4D.2.5
    3、(4分)如果等边三角形的边长为4,那么等边三角形的中位线长为
    A.B.4C.6 D.8
    4、(4分)如图,在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②EB⊥ED;③PD=,其中正确结论的序号是( )
    A.①②B.①③C.②③D.①②③
    5、(4分)如图,四边形中,,,,,则四边形的面积是( ).
    A.B.C.D.
    6、(4分)在下列条件中,能判定四边形为平行四边形的是( )
    A.两组对边分别平行B.一组对边平行且另一组对边相等
    C.两组邻边相等D.对角线互相垂直
    7、(4分)如图,直线经过点,则关于的不等式的解集是( )
    A.B.C.D.
    8、(4分)下列各式不能用公式法分解因式的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是 .
    10、(4分)使代数式有意义的的取值范围是________.
    11、(4分)命题“角平分线上的点到这个角的两边的距离相等”的逆命题是______,它是___命题(填“真”或“假”).
    12、(4分)当时,二次根式的值是______.
    13、(4分)已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.
    (1)如图1,连接DE,AF.若DE⊥AF,求t的值;
    (2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?
    15、(8分)我们知道一个“非负数的算术平方根”指的是“这个数的非负平方根”。据此解答下列问题:
    (1)是的算术平方根吗?为什么?
    (2)是的算术平方根吗?为什么?
    (3)你能证明:吗?
    16、(8分)如图,在正方形ABCD中,E、F分别为AB、BC的中点,连接CE、DF,将△CBE沿CE对折,得到△CGE,延长EG交CD的延长线于点H。
    (1)求证:CE⊥DF;
    (2)求的值.
    17、(10分)如图,在四边形ABCD中,AB=AC,BD=DC,BE//DC,请仅用无刻度的直尺按下列要求画图.
    (1)在图1中,画一个以AB为边的直角三角形;
    (2)在图2中,画一个菱形.
    18、(10分)已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
    (1)求这个函数的解析式;
    (2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
    (3)当-3<x<-1时,求y的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在等腰三角形ABC中,AB=AC,∠B=30°,BC=cm,P是BC上任意一点,过P作PD//AB,PE//AC,则PE+PD的值为__________________.
    20、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为和两部分,则该平行四边形的周长为______.
    21、(4分)直线y=2x﹣4与x轴的交点坐标是_____.
    22、(4分)在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=_____.
    23、(4分)已知点P(-2,1),则点P关于x轴对称的点的坐标是__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重 合,CG与EF交于点p,取GH的中点Q,连接PQ,则△GPQ的周长最小值是__
    25、(10分)如图,在△ABC中,AB=6,AC=8,D是AB的中点.若在AC上存在一点E,使得△ADE与原三角形相似.
    (1)确定E的位置,并画出简图:
    (2)求AE的长.
    26、(12分)已知:如图平行四边形中,,且,过作于,点是的中点,连接交于点,点是的中点,过作交的延长线于.
    (1)若,求的长.(2)求证:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    ∵四边形ABCD是矩形,
    ∴AO=BO=DO=CO,AC=BD,
    故①③正确;
    ∵BO=DO,
    ∴S△ABO=S△ADO,故②正确;
    当∠ABD=45°时,∠AOD=90°,
    ∴AC⊥BD,
    ∴矩形ABCD会变成正方形,故⑤正确,
    而④不一定正确,矩形的对角线只是相等且互相平分,
    ∴正确结论的个数是4.
    故选C.
    2、A
    【解析】
    根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE =CD+DE,代入求出即可.
    【详解】
    如图,连接EC,
    ∵在矩形ABCD中,AB=4,BC=8,
    ∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,
    ∵OE⊥AC,
    ∴AE=CE,
    在Rt△CDE中,由勾股定理得:CE=CD+DE,
    即AE=4+(8−AE) ,
    解得:AE=5,
    故选A.
    此题考查线段垂直平分线的性质,解题关键在于作辅助线.
    3、A
    【解析】
    试题分析:根据三角形的中位线等于第三边一半的性质,得这个等边三角形的中位线长为2。故选A。
    4、A
    【解析】
    ①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;③在Rt△AEP中,利用勾股定理,可求得EP、BE的长,再依据△APD≌△AEB,即可得出PD=BE,据此即可判断.
    【详解】
    ①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
    ∴∠EAB=∠PAD,
    又∵AE=AP,AB=AD,
    ∴△APD≌△AEB,故①正确;
    ②∵△APD≌△AEB,
    ∴∠APD=∠AEB,
    又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
    ∴∠BEP=∠PAE=90°,
    ∴EB⊥ED,故②正确;
    ③在Rt△AEP中,
    ∵AE=AP=1,
    ∴EP=,
    又∵PB=,
    ∴BE=,
    ∵△APD≌△AEB,
    ∴PD=BE=,故③错误,
    故选A.
    本题考查了全等三角形的判定与性质、正方形的性质、三角形面积、勾股定理等,综合性质较强,有一定的难度,熟练掌握相关的性质与定理是解题的关键.
    5、A
    【解析】
    如下图,分别过、作的垂线交于、,
    ∴,
    ∵,
    ∴,
    在中,

    ∴.
    故选A.
    6、A
    【解析】
    根据平行四边形的判定定理逐个判断即可.
    【详解】
    A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;
    B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;
    C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;
    D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;
    故选A.
    本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.
    7、B
    【解析】
    观察函数图象得到当x<2时,即图象在y轴的左侧,函数值都都大于1.
    【详解】
    解:观察函数图象可知当x<2时,y>1,所以关于x的不等式kx+b>1的解集是x<2.
    故选:B.
    本题考查了一次函数与一元一次不等式:从函数的角度看,关于的不等式的解集就是寻求使一次函数y=kx+b的值大于1的自变量x的取值范围.
    8、C
    【解析】
    根据公式法有平方差公式、完全平方公式,可得答案.
    【详解】
    A、x2-9,可用平方差公式,故A能用公式法分解因式;
    B、-a2+6ab-9 b2能用完全平方公式,故B能用公式法分解因式;
    C、-x2-y2不能用平方差公式分解因式,故C正确;
    D、x2-1可用平方差公式,故D能用公式法分解因式;
    故选C.
    本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD.
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形.
    ∴AB=DE=CD,即D为CE中点.
    ∵EF⊥BC,
    ∴∠EFC=90°.
    ∵AB∥CD,
    ∴∠DCF=∠ABC=60°.
    ∴∠CEF=30°.
    ∵EF=,
    ∴CE=2
    ∴AB=1
    10、x≥﹣1.
    【解析】
    根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.
    【详解】
    解:由题意得,1+x≥0,
    解得x≥-1.
    故答案为x≥-1.
    本题考查二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    11、到角的两边距离相等的点在角平分线上, 真.
    【解析】
    把一个命题的条件和结论互换就得到它的逆命题.
    【详解】
    解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”,它是真命题.
    本题考查了互逆命题的知识和命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    12、2
    【解析】
    把x=3代入二次根式,可得.
    【详解】
    把x=3代入二次根式,可得.
    故答案为:2
    本题考核知识点:二次根式化简. 解题关键点:熟练进行化简.
    13、4.1
    【解析】
    分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.
    【详解】
    若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;
    若众数为1,则数据为1、1、1、7,中位数为1,符合题意,
    此时平均数为=4.1;
    若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;
    故答案为:4.1.
    本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)t=1;(2)当时,△EBF∽△DCF;
    【解析】
    (1)利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.
    (2)利用△EBF∽△DCF,得出,列出方程求解.
    【详解】
    解:(1)∵DE⊥AF,
    ∴∠AOE=90°,
    ∴∠BAF+∠AEO=90°,
    ∵∠ADE+∠AEO=90°,
    ∴∠BAF=∠ADE,
    又∵四边形ABCD是正方形,
    ∴AB=AD,∠ABF=∠DAE=90°,
    在△ABF和△DAE中,

    ∴△ABF≌△DAE(ASA)
    ∴AE=BF,
    ∴1+t=2t,
    解得t=1;
    (2)如图2,
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=4,
    ∵BF=2t,AE=1+t,
    ∴FC=4-2t,BE=4-1-t=3-t,
    当△EBF∽△DCF时,

    ∴=,
    解得,t1=,t2=(舍去),
    故t=.
    所以当t=时,△EBF∽△DCF.
    本题主要考查了四边形的综合题,利用了全等三角形的判定和性质,相似三角形的判定和性质,难度一般.
    15、(1)不是;(2)是;(3)见解析.
    【解析】
    根据平方根与算术平方根的定义,以及绝对值的意义即可作出判断.
    【详解】
    (1)-2不是4的算术平方根,
    ∵(-2)2=4,
    ∴-2是4的平方根,
    但-2<0,
    ∴-2不是4的算术平方根;
    (2)2是4的算术平方根,
    ∵22=4,
    ∴2是4的算术平方根,
    (3)可以证明:,
    ∵,,
    ∴.
    此题主要考查了算术平方根的定义、绝对值的意义,算术平方根的概念易与平方根的概念混淆而导致错误.
    16、(1)见解析;(2).
    【解析】
    (1)运用△BCE≌Rt△CDF(SAS),再利用角的关系求得∠CKD=90°即可解题.
    (2)设正方形ABCD的边长为2a,设CH=x,利用勾股定理求出a与x之间的关系即可解决问题.
    【详解】
    (1)证明:设EC交DF于K.
    ∵E,F分别是正方形ABCD边AB,BC的中点,
    ∴CF=BE,
    在Rt△BCE和Rt△CDF中,

    ∴△BCE≌Rt△CDF(SAS),
    ∠BCE=∠CDF,
    又∵∠BCE+∠ECD=90°,
    ∴∠CDF+∠ECD=90°,
    ∴∠CKD=90°,
    ∴CE⊥DF.
    (2)解:设正方形ABCD的边长为2a.
    EB=EG,∠BEC=∠CEG,∠EGC=∠B=90°
    ∵CD∥AB,
    ∴∠ECH=∠BEC,∴∠ECH=∠CEH,
    ∴EH=CH,
    ∵BE=EG=a,CD=CG=2a,
    在Rt△CGH中,设CH=x,
    ∴x2=(x-a)2+(2a)2,
    ∴x=a,
    ∴GH=EH-EG=a-a=a,
    ∴.
    本题考查的是旋转变换、翻折变换、正方形的性质、全等三角形的判定与性质等知识,熟知旋转、翻折不变性是解答此题的关键,学会构建方程解决问题.
    17、(1)作图见解析 (2)作图见解析
    【解析】
    (1)连接AD、BC相交于点O,Rt△AOB即为所求;
    (2)连接AD交BE于F,连接CF,四边形BFCD即为所求.
    【详解】
    (1)连接AD、BC相交于点O,Rt△AOB即为所求;
    (2)连接AD交BE于F,连接CF,四边形BFCD即为所求.
    本题考查了尺规作图的问题,掌握直角三角形和菱形的性质是解题的关键.
    18、(1)这个函数的解析式为:;(1)点C在函数图象上,理由见解析;(3),-2<y<-1.
    【解析】
    (1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值;
    (1)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于2时,即该点在函数图象上;
    (3)根据反比例函数图象的增减性解答问题.
    【详解】
    解:(1)∵反比例函数(k为常数,k≠0)的图象经过点A(1,3),
    ∴把点A的坐标代入解析式,得,解得,k=2.
    ∴这个函数的解析式为:.
    (1)∵反比例函数解析式,
    ∴2=xy.
    分别把点B、C的坐标代入,得
    (-1)×2=-2≠2,则点B不在该函数图象上;
    3×1=2,则点C在函数图象上.
    (3)∵k>0,
    ∴当x<0时,y随x的增大而减小.
    ∵当x=-3时,y=-1,当x=-1时,y=-2,
    ∴当-3<x<-1时,-2<y<-1.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、6
    【解析】
    分析:先证明BE=PE,AE=PD,把求PE+PD的长转化为求AB的长,然后作AF⊥BC于点F,在Rt△ABF中求AB的长即可.
    详解:∵AB=AC,∠B=30°,
    ∴∠B=∠C=30°,
    ∵PE//AC,
    ∴∠BPE=∠C=30°,
    ∴∠BPE=∠B=30°,
    ∴BE=PE.
    ∵PD//AB,PE//AC,
    ∴四边形AEPD是平行四边形,
    ∴AE=PD,
    ∴PE+PD=BE+AE=AB.
    作AF⊥BC于点F.
    ∴,.
    ∵AB2=AF2+BF2,
    ∴,
    ∴AB=6,
    故答案为:6.
    点睛:本题考查了平行线的性质,等腰三角形的判定与性质,平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,根据题意把求PE+PD的长转化为求AB的长是是解答本题的关键.
    20、20cm或22cm.
    【解析】
    根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
    【详解】
    如图:
    ∵ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠AEB,
    ∵AE为角平分线,
    ∴∠DAE=∠BAE,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴①当BE=3cm,CE=4cm,AB=3cm,
    则周长为20cm;
    ②当BE=4cm时,CE=3cm,AB=4cm,
    则周长为22cm.
    本题考查平行四边形的性质,分类讨论是关键.
    21、(2,0)
    【解析】
    与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.
    【详解】
    解:令,则,
    解得.
    所以,直线与x轴的交点坐标是.
    故填:.
    本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.
    22、22.5°
    【解析】
    连接AC,由正方形性质可知BD=AC,∠ACB=45°,由CE=BD得AC=CE,所以∠CAE=∠CEA,因为∠ACB=∠CAE+∠AEC=2∠AEC=45°,即可得答案.
    【详解】
    如图:连接AC,
    ∵ABCD是正方形
    ∴AC=BD,∠ACB=45°,
    ∵CE=BD
    ∴∠CAE=∠CEA,
    ∵∠ACB=∠CAE+∠AEC=2∠AEC=45°
    ∴∠AEC=22.5°,
    故答案为:22.5°
    本题考查正方形的性质,熟练掌握相关知识是解题关键.
    23、 (-2,-1)
    【解析】
    根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.
    【详解】
    点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),
    故答案是:(﹣2,﹣1).
    考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    如图,取CD的中点N,连接PN,PB,BN.首先证明PQ=PN,PB=PG,推出PQ+PG=PN+PB≥BN,求出BN即可解决问题.
    【详解】
    解:如图,取CD的中点N,连接PN,PB,BN.
    由翻折的性质以及对称性可知;PQ=PN,PG=PC,HG=CD=4,
    ∵QH=QG,
    ∴QG=2,
    在Rt△BCN中,BN= ,
    ∵∠CBG=90°,PC=PG,
    ∴PB=PG=PC,
    ∴PQ+PG=PN+PB≥BN=2,
    ∴PQ+PG的最小值为2,
    ∴△GPQ的周长的最小值为2+2,
    故答案为2+2.
    本题考查翻折变换,正方形的性质,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考填空题中的压轴题.
    25、(1)画出简图见解析;(2)AE的长为4或.
    【解析】
    (1)分别从△ADE∽△ABC与△ADE∽△ACB去求解,即可画出图形;
    (2)分别从当时,△ADE∽△ABC与当时,△ADE∽△ACB去分析求解即可求得答案.
    【详解】
    画出简图如图所示:
    当DE1∥BC时,△ADE∽△ABC
    当∠ADE2=∠C时,△ADE∽△ACB
    (2)∵D是AB的中点,AB=6,
    ∴AD=3,
    ∵∠A是公共角,
    ∴当时,△ADE∽△ABC,
    ∴,
    解得:AE1=4;
    ∴当时,△ADE∽△ACB,
    ∴,
    解得AE2=,
    ∴AE的长为4或.
    本题考查了相似三角形的判定与性质,正确地进行分类讨论,熟练运用相似三角形的相关知识是解题的关键.
    26、(1);(2)见解析.
    【解析】
    (1)由已知四边形是平行四边形得出,且,可求出AF,再通过证明即可求出的长;(2)通过作辅助线证明即可证明.
    【详解】
    解:(1)在平行四边形中,

    ∵,
    ∴,
    ,,
    ∴,
    ∴.
    点是的中点,

    .
    ∴,

    ∴,,
    ∴.
    (2)连接,
    ∵,,
    ∴,
    ∵点是的中点,,
    ∴,
    ∴,

    ∴,
    ∴,
    ∴.
    方法二:取中点,连接(其他证法均参照评分)
    本题考查了平行四边形的性质、三角形全等的判定与性质,利用三角形证明与是解题的关键.
    题号





    总分
    得分

    相关试卷

    2024-2025学年山东省青岛市第九中学九上数学开学经典模拟试题【含答案】:

    这是一份2024-2025学年山东省青岛市第九中学九上数学开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】:

    这是一份2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省惠民县九上数学开学达标测试试题【含答案】:

    这是一份2024-2025学年山东省惠民县九上数学开学达标测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map