开学活动
搜索
    上传资料 赚现金

    2024-2025学年山东省曲阜市田家炳中学九上数学开学质量跟踪监视模拟试题【含答案】

    2024-2025学年山东省曲阜市田家炳中学九上数学开学质量跟踪监视模拟试题【含答案】第1页
    2024-2025学年山东省曲阜市田家炳中学九上数学开学质量跟踪监视模拟试题【含答案】第2页
    2024-2025学年山东省曲阜市田家炳中学九上数学开学质量跟踪监视模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省曲阜市田家炳中学九上数学开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份2024-2025学年山东省曲阜市田家炳中学九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,点 E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF; ③AF=CE;④∠AEB=∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )
    A.①②③B.①②④C.①③④D.②③④
    2、(4分)某班第一小组9名同学数学测试成绩为:78,82,98,90,100,60,75,75,88,这组数据的中位数是
    A.60B.75C.82D.100
    3、(4分)若菱形的周长为16,高为2,则菱形两个邻角的比为( )
    A.6:1B.5:1C.4:1D.3:1
    4、(4分)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
    ①线段MN的长;
    ②△PAB的周长;
    ③△PMN的面积;
    ④直线MN,AB之间的距离;
    ⑤∠APB的大小.
    其中会随点P的移动而变化的是( )
    A.②③B.②⑤C.①③④D.④⑤
    5、(4分)如图,四边形中,与不平行,分别是的中点,,,则的长不可能是( )
    A.1.5B.2C.2.5D.3
    6、(4分)下列各组数中,不能构成直角三角形的是( )
    A.B.C.D.
    7、(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有( )个菱形.
    A.33B.36C.37D.41
    8、(4分)化简的结果是( )
    A.4B.2C.3D.2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是_____.
    10、(4分)若方程(k为常数)有两个不相等的实数根,则k取值范围为 .
    11、(4分)若,则=____
    12、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
    13、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)分解因式:(1)x2(x﹣y)+(y﹣x) ;(2)﹣4a2x+12ax﹣9x
    15、(8分)如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.
    (1)若AB=8,AC=4,求DE的长;
    (2)求证:AB-AC=2DM.
    16、(8分)若抛物线上,它与轴交于,与轴交于、,是抛物线上、之间的一点,

    (1)当时,求抛物线的方程,并求出当面积最大时的的横坐标.
    (2)当时,求抛物线的方程及的坐标,并求当面积最大时的横坐标.
    (3)根据(1)、(2)推断的横坐标与的横坐标有何关系?
    17、(10分)如图,矩形ABCD中,对角线AC与BD相交于点O.
    (1)写出与相反的向量______;
    (2)填空:++=______;
    (3)求作:+(保留作图痕迹,不要求写作法).
    18、(10分)用适当的方法解方程
    (1)x2﹣4x+3=1;
    (2)(x+1)2﹣3(x+1)=1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.
    20、(4分)如图,中,是延长线上一点,,连接交于点,若平分,,则________.
    21、(4分)已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____
    22、(4分)如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.
    23、(4分) 已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.
    (1)求证:△ADE≌△FCE;
    (2)若AB=2BC,∠F=36°,求∠B的度数.
    25、(10分)计算
    (1)5﹣9+
    (2)(2+)2﹣2.
    26、(12分)解方程:
    (1);
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.
    详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;
    添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE ∥BF,∴DEBF是平行四边形,故②正确;
    添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故③正确;
    添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故④正确.
    综上所述:可添加的条件是:②③④.
    故选D.
    点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.
    2、C
    【解析】
    根据中位数的定义:将一组数据按照大小顺序排列后,取最中间的数或最中间两个数的平均数,做为这组数据的中位数.
    【详解】
    先将9名同学数学测试成绩:78,82,98,90,100,60,75,75,88,
    按从小到大排列: 60,75,75, 78,82, 88,90,98,100,
    其中最中间的数是:82,
    所以这组数据的中位数是82,
    故选C.
    本题主要考查数据中位数的定义,解决本题的关键是要熟练掌握中位数的定义.
    3、B
    【解析】
    由锐角函数可求∠B的度数,可求∠DAB的度数,即可求解.
    【详解】
    如图,
    ∵四边形ABCD是菱形,菱形的周长为16,
    ∴AB=BC=CD=DA=4,
    ∵AE=2,AE⊥BC,
    ∴sin∠B=
    ∴∠B=30°
    ∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴∠DAB+∠B=180°,
    ∴∠DAB=150°,
    ∴菱形两邻角的度数比为150°:30°=5:1,
    故选:B.
    本题考查了菱形的性质,锐角三角函数,能求出∠B的度数是解决问题的关键.
    4、B
    【解析】
    试题分析:
    ①、MN=AB,所以MN的长度不变;
    ②、周长C△PAB=(AB+PA+PB),变化;
    ③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
    ④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
    ⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
    故选B
    考点:动点问题,平行线间的距离处处相等,三角形的中位线
    5、D
    【解析】
    连接BD,取BD的中点G,连接MG、NG,根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2MG,DC=2NG,再根据三角形的任意两边之和大于第三边得出MN<(AB+DC),即可得出结果.
    【详解】
    解:如图,连接BD,取BD的中点G,连接MG、NG,
    ∵点M,N分别是AD、BC的中点,
    ∴MG是△ABD的中位线,NG是△BCD的中位线,
    ∴AB=2MG,DC=2NG,
    ∴AB+DC=2(MG+NG),
    由三角形的三边关系,MG+NG>MN,
    ∴AB+DC>2MN,
    ∴MN<(AB+DC),
    ∴MN<3;
    故选:D.
    本题考查了三角形的中位线定理,三角形的三边关系;根据不等关系考虑作辅助线,构造成以MN为一边的三角形是解题的关键.
    6、C
    【解析】
    根据勾股定理的逆定理逐项计算即可.
    【详解】
    A. ∵32+42=52,∴能构成直角三角形;
    B. ∵12+22=,∴能构成直角三角形;
    C. ∵,∴不能构成直角三角形;
    D. ∵12+=22,∴ 能构成直角三角形;
    故选C.
    本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
    7、C
    【解析】
    设第n个图形有an个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“an=4n+1(n为正整数)”,再代入n=9即可求出结论.
    【详解】
    解:设第n个图形有an个菱形(n为正整数).
    观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,
    ∴an=4n+1(n为正整数),
    ∴a9=4×9+1=1.
    故选:C.
    本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化找出变化规律“an=4n+1(n为正整数)”是解题的关键.
    8、B
    【解析】
    试题解析:.
    故选B.
    考点:二次根式的化简.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    先求得A1(0,1),OA1=1,然后根据正方形的性质求出C1(1,0),B1(1,1),同样的方法求出C2(3,0),B2(3,2),C3(7,0),B3(7,4),……,从而有Cn(2n-1,0),Bm(2n-1,2n-1),由此即可求得答案.
    【详解】
    当x=0时,y=x+1=1,
    ∴A1(0,1),OA1=1,
    ∵正方形A1B1C1O,
    ∴A1B1=B1C1=OC1=OA1=1,
    ∴C1(1,0),B1(1,1),
    当x=1时,y=x+1=2,
    ∴A2(1,2),C1A2=2,
    ∵正方形A2B2C2C1,
    ∴A2B2=B2C2=C1C2=C1A1=2,
    ∴C2(3,0),B2(3,2),
    当x=3时,y=x+1=4,
    ∴A3(3,4),C2A3=4,
    ∵正方形A3B3C3C2,
    ∴A3B3=B3C3=C2C3=C2A3=4,
    ∴C3(7,0),B3(7,4),
    ……
    ∴Cn(2n-1,0),Bm(2n-1,2n-1),
    ∴B2019(22019-1,22018),
    故答案为(22019-1,22018).
    本题考查一次函数图象上点的坐标特征、正方形的性质,解题的关键是明确题意,找出各个点之间的关系,利用数形结合的思想解答问题.
    10、
    【解析】
    根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论,
    【详解】
    解:∵方程(k为常数)的两个不相等的实数根,
    ∴>0,且,
    解得:k

    相关试卷

    2024-2025学年山东省临清市刘垓子镇中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年山东省临清市刘垓子镇中学九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省巨野县九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年山东省巨野县九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省德州市八校九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年山东省德州市八校九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map