2024-2025学年山东省日照市岚山区九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份2024-2025学年山东省日照市岚山区九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知y与x成正比例,并且时,,那么y与x之间的函数关系式为( )
A.B.C.D.
2、(4分)在平面直角坐标系中,点关于轴的对称点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)我们知道正五边形不能进行平面镶嵌,若将三个全等的正五边形按如图所示拼接在一起,那么图中的∠1的度数是( )
A.18°B.30°C.36°D.54°
4、(4分)某次知识竞赛共有道题,每一题答对得分,答错或不答扣分,小亮得分要超过分,他至少要答对多少道题?如果设小亮答对了道题,根据题意列式得( )
A.B.
C.D.
5、(4分)如图,在中,,,、、分别为、、的中点,连接、,则四边形的周长是( )
A.5B.7C.9D.11
6、(4分)如图,在单位正方形组成的网格图中标有四条线段,其中能构成一个直角三角形三边的线段是( )
A.B.C.D.
7、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<1;②a>1;③当x<4时,y1<y2;④b<1.其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
8、(4分)某人从一鱼摊上买了三条鱼,平均每条元,又从另一个鱼摊上买了两条鱼,平均每条元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是
A.B.C.D.与大小无关
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形的对角线交于点为边的中点,如果菱形的周长为,那么的长是__________.
10、(4分)如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.
11、(4分)已知关于x的不等式组的整数解共有5个,则a的取值范围是_________
12、(4分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.
13、(4分)如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,长的楼梯的倾斜角为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为45°,求调整后的楼梯的长.
15、(8分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.
(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?
16、(8分)如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D
(1)如图1,当P为AB的中点时,求出AD的长
(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°
(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式
17、(10分)解方程:
(1)3x(x﹣1)=2﹣2x;
(2)2x2﹣4x﹣1=1.
18、(10分)某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:
(1)该班共有多少名学生参加这次测验?
(2)求1.5~2.5这一分数段的频数是多少,频率是多少?
(3)若80分以上为优秀,则该班的优秀率是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
20、(4分)从一副扑克牌中任意抽取 1 张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)
21、(4分)如图,正方形ABCD的边长为4,P为正方形边上以C为起点,沿CBA的路径移动的动点,设P点经过的路径长为,△APD的面积是,则与的函数关系式为_______.
22、(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.
23、(4分)己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解一元二次方程
(1)2x+x-3=0 (2)
25、(10分)如图,正方形网格中的每个小正方形边长都是,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.
(1)在图①中,画一个三角形,使它的三边长都是有理数;
图①
(2)在图②中,画一个直角三角形,使它们的三边长都是无理数.
图②
26、(12分)在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是斜边AB和直角边BC上的点,把△ABC沿着直线DE折叠,顶点B的对应点是点B′.
(1)如图①,如果点B′和点A重合,求CE的长.
(2)如图②,如果点B′落在直角边AC的中点上,求BE的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据y与x成正比例,可设,用待定系数法求出k值.
【详解】
解:设,将,,代入得:
解得:k=8,所以y与x之间的函数关系式为.
故答案为:A
本题考查了正比例函数的解析式,根据正比例函数的定义设出其表达式是解题的关键.
2、D
【解析】
首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.
【详解】
点P(2,3)关于x轴的对称点为(2,−3),
(2,−3)在第四象限.
故选:D.
此题考查关于x轴、y轴对称的点的坐标,解题关键在于掌握对称的性质.
3、C
【解析】
正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°.多边形内角和定理:(n-2)•180 (n≥3)且n为整数).
【详解】
解:正五边形的内角:(5-2)×180°÷5=108°,
∴∠1=360°-108°×3=36°,
故选:C.
此题考查平面镶嵌,熟练运用多边形内角和公式是解题的关键.
4、D
【解析】
小亮答对题的得分:,小亮答错题的得分:,不等关系:小亮得分要超过分.
【详解】
根据题意,得
.
故选:.
此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.
5、A
【解析】
先根据三角形中位线性质得DF=BC=1,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.
【详解】
解:∵D、E、F分别为AB、BC、AC中点,
∴DF=BC=1,DF∥BC,EF=AB=,EF∥AB,
∴四边形DBEF为平行四边形,
∴四边形DBEF的周长=2(DF+EF)=2×(1+)=1.
故选A.
本题考查三角形中位线定理和四边形的周长,解题的关键是掌握三角形中位线定理.
6、C
【解析】
设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度的平方(因为逆定理也要计算平方),再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.
【详解】
设小正方形的边长为1,
则AB2=22+22=8,CD2=22+42=20,
EF2=12+22=5,GH2=22+32=13.
因为AB2+EF2=GH2,
所以能构成一个直角三角形三边的线段是AB、EF、GH.
故选C.
本题考查勾股定理, 勾股定理的逆定理,能熟练运用勾股定理的计算公式进行计算和运用勾股定理的逆定理进行判断是解决本题的关键.
7、D
【解析】
根据一次函数的性质对①②④进行判断;当x<4时,根据两函数图象的位置对③进行判断.
【详解】
解:根据图象y1=kx+b经过第一、二、四象限,
∴k<1,b>1,
故①正确,④错误;
∵y2=x+a与y轴负半轴相交,
∴a<1,
故②错误;
当x<4时图象y1在y2的上方,所以y1>y2,故③错误.
所以正确的有①共1个.
故选D.
此题主要考查了一次函数,以及一次函数与不等式,根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.
8、A
【解析】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0.
【详解】
利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0
∴0.5b-0.5a<0,
∴a>b.
故选A.
解决本题的关键是读懂题意,找到符合题意的不等关系式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
直接利用菱形的性质得出其边长以及对角线垂直,进而利用直角三角形的性质得出EO的长.
【详解】
解:∵菱形ABCD的周长为12,
∴AD=3,∠AOD=90°,
∵E为AD边中点,
∴OE=AD=.
故答案为:.
本题主要考查了菱形的性质以及直角三角形的性质(直角三角形斜边上的中线等于斜边的一半),正确掌握直角三角形的性质是解题关键.
10、a>b>d>c
【解析】
设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.
【详解】
因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),
所以,a>b>d>c.
本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.
11、-3
相关试卷
这是一份2024-2025学年山东省济宁市兖州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省济南市济阳区数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省东明县数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。