2024-2025学年山西省(同盛地区)九上数学开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为( )
A.B.C.D.
2、(4分)下列多项式能分解因式的是( )
A.B.C.D.
3、(4分)下列命题是假命题的是( )
A.四边都相等的四边形为菱形B.对角线互相平分的四边形为平行四边形
C.对角线相等的平行四边形为矩形D.对角线互相垂直且相等的四边形为正方形
4、(4分)已知某一次函数的图象与直线平行,且过点(3, 7),那么此一次函数为( )
A.B.C.D.
5、(4分)△ABC中,若AC=4,BC=2,AB=2,则下列判断正确的是( )
A.∠A=60°B.∠B=45°C.∠C=90°D.∠A=30°
6、(4分)如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形从图示位置开始,沿着正方形ABCD的边AB→BC→CD→DA→AB连续地翻转,那么这个小正方形第2018次翻转到箭头与初始位置相同的方向时,小正方形所处的位置( )
A.在AB边上B.在BC边上C.在CD边上D.在DA边上
7、(4分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是( )
A.x>0B.x<0C.x>-1D.x>2
8、(4分)下列计算错误的是( )
A.÷=3B.=5
C.2+=2D.2•=2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组> > -2的解集是_________
10、(4分)如图,在中,,点、、分别为、、的中点.若,则的长为_____________.
11、(4分)已知线段a,b,c能组成直角三角形,若a=3,b=4,则c=_____.
12、(4分)已知x1,x2,x3的平均数=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.
13、(4分)已知y是x的一次函数,右表列出了部分对应值,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:.其中a=3+.
15、(8分)已知一次函数的图象过点(3,5)与点(-4,-9).
(1)求这个一次函数的解析式.
(2)若点在这个函数的图象上,求的值.
16、(8分)甲,乙两人沿汀江绿道同地点,同方向运动,甲跑步,乙骑车,两人都匀速前行,若甲先出发60s,乙骑车追赶且速度是甲的两倍在运动的过程中,设甲,乙两人相距,乙骑车的时间为,y是t的函数,其图象的一部分如图所示,其中.
(1)甲的速度是多少;
(2)求a的值,并说明A点坐标的实际意义;
(3)当时,求y与t的函数关系式.
17、(10分)(1)分解因式:x(x﹣y)﹣y(y﹣x)
(2)解不等式组,并把它的解集在数轴上表示出来.
18、(10分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.
(1)求证:△AOE≌△COF;
(2)若AC平分∠HAG,求证:四边形AGCH是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.
20、(4分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.
21、(4分)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为___
22、(4分)在五边形中,若,则______.
23、(4分)若是正整数,则整数的最小值为__________________。
二、解答题(本大题共3个小题,共30分)
24、(8分)一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.
(1)求出该一次函数的表达式;
(2)画出该一次函数的图象;
(3)判断(﹣5,﹣4)是否在这个函数的图象上?
(4)求出该函数图象与坐标轴围成的三角形面积.
25、(10分)如图,在平行四边形中,,是中点,在延长线上,连接相交于点.
(1)若,求平行四边形的面积;
(2)若,求证:.
26、(12分)如图,函数 y=2x 与 y=ax+5 的图象相交于点 A(m,4).
(1)求 A 点坐标及一次函数 y=ax+5 的解析式;
(2)设直线 y=ax+5 与 x 轴交于点 B,求△AOB 的面积;
(3)求不等式 2x<ax+5 的解集.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:先求得直线AB解析式为y=x﹣1,即可得P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点坐标公式,即可得到点A'的坐标.
详解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴A(4,3),
设直线AB解析式为y=kx+b,
则,解得,
∴直线AB解析式为y=x﹣1,
令x=0,则y=﹣1,
∴P(0,﹣1),
又∵点A与点A'关于点P成中心对称,
∴点P为AA'的中点,
设A'(m,n),则=0,=﹣1,
∴m=﹣4,n=﹣5,
∴A'(﹣4,﹣5),
故选A.
点睛:本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.
2、B
【解析】
直接利用分解因式的基本方法分别分析得出答案.
【详解】
解:A、x2+y2,无法分解因式,故此选项错误;
B、x2y-xy2=xy(x-y),故此选项正确;
C、x2+xy+y2,无法分解因式,故此选项错误;
D、x2+4x-4,无法分解因式,故此选项错误;
故选:B.
本题考查对分解因式的方法的理解和运用,分解因式的步骤是:第一步,先看看能否提公因式;第二步,再运用公式法,①平方差公式:a2-b2=(a+b)(a-b);② a2±2ab+b2=(a±b)2,第三步:再考虑用其它方法,如分组分解法等.
3、D
【解析】
根据矩形、平行四边形、菱形、正方形的判定定理判断即可.
【详解】
A、根据菱形的判定定理可知是真命题;
B、根据平行四边形的判定定理可知是真命题;
C、根据矩形的的判定定理可知是真命题;
D、根据正方形的判定定理可知是假命题.
故选D
本题考查假命题的定义,涉及了矩形、平行四边形、菱形、正方形的判定定理.
4、B
【解析】
一次函数的图象与直线y=2x平行,所以k值相等,即k=2,又因该直线过点(3, 7),所以就有7=6+b,从而可求出b的值,进而解决问题.
【详解】
∵一次函数y=kx+b的图象与直线平行,
∴k=2,
则即一次函数的解析式为y=2x+b.
∵直线过点(3, 7),
∴7=6+b,
∴b=1.
∴直线l的解析式为y=2x+1.
故选B.
此题考查一次函数中的直线位置关系,解题关键在于利用待定系数法求解.
5、A
【解析】
先利用勾股定理的逆定理得出∠B=90°,再利用三角函数求出∠A、∠C即可.
【详解】
∵△ABC中,AC=4,BC=2,AB=2,
∴=2+,即=+,
∴△ABC是直角三角形,且∠B=90°,
∵AC=2 AB,
∴∠C=30°,
∴∠A=90°-∠C=60°.
故选:A.
本题考查了勾股定理的逆定理、含30度角的直角三角形的性质,如果三角形的三边长满足,那么这个三角形就是直角三角形.求出∠B=90°是解题的关键.
6、C
【解析】
由正方形ABCD的边长是3cm,小正方形的边长为1cm,则小正方形在正方形ABCD每条边上翻转两次,每个直角处翻转一次,小正方形共翻转12次回到原来的位置,即可得到它的方向.
【详解】
∵正方形ABCD的边长是3cm,小正方形的边长为1cm,
∴小正方形在正方形ABCD每条边上翻转两次,每个直角处翻转一次,小正方形翻转12次回到原来的位置,
∴2018÷12=它的方向为B选项所指的方向.
故选C.
本题主要利用正方形为背景考查了规律探索,解决这类问题的方法一般是先求解一部分情况,从特殊到一般而后发现规律拓展推广.
7、C
【解析】
首先找到当y>0时,图象所在位置,再根据图象可直接得到答案.
【详解】
当y>0时,图象在x轴上方,
∵与x交于(-1,0),
∴y>0时,自变量x的取值范围是x>-1,
故选:C.
考查了一次函数与一元一次不等式,关键是能从图象中找到对应的直线.
8、C
【解析】
根据二次根式的运算法则及二次根式的性质逐一计算即可判断.
【详解】
解:A、÷=3÷=3,此选项正确;
B、=5,此选项正确;
C、2、不能合并,此选项错误,符合题意;
D、2•=2,此选项正确;
故选C.
本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及二次根式的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解:由于直线过点A(0,2),P(1,m),
则,解得,
,
故所求不等式组可化为:
mx>(m-2)x+2>mx-2,
0>-2x+2>-2,
解得:1<x<2,
10、1
【解析】
已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.
【详解】
解:∵△ABC是直角三角形,CD是斜边的中线,
∴AB=2CD
又∵EF是△ABC的中位线,
∴AB=2CD=2×1=10cm,
故答案为:1.
此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
11、5或
【解析】
由于没有指明斜边与直角边,因此要分4为斜边与4为直角边两种情况来求解.
【详解】
分两种情况,当4为直角边时,c为斜边,c==5;
当长4的边为斜边时,c==,
故答案为:5或.
本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.
12、20 12
【解析】
∵=10,
∴=10,
设2,2,2的方差为,
则=2×10=20,
∵ ,
∴
=
=4×3=12.
故答案为20;12.
点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.
13、1
【解析】
先设一次函数关系式:,根据表格中的数据代入函数关系式可得:,解得:,继而可求一次函数关系式,最后将x=0代入求解.
【详解】
设一次函数关系式:,
根据表格中的数据代入函数关系式可得:,
解得:,
所以一次函数关系式是:
将x=0,y=m代入可得:
,
故答案为:1.
本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法.
三、解答题(本大题共5个小题,共48分)
14、a﹣3,
【解析】
根据题意对原式利用乘法分配律计算得到最简结果,把a的值代入计算即可求出值.
【详解】
解:
=﹣•
=2(a﹣1)﹣(a+1)
=2a﹣2﹣a﹣1
=a﹣3,
当a=3+时,原式=3+﹣3=.
本题考查分式的化简求值,熟练掌握分式混合运算法则是解答本题的关键.
15、(1);(2)
【解析】
(1)设函数解析式为,将两点坐标代入求解即可;
(2)将点的坐标代入解析式即可求的值.
【详解】
(1)设函数解析式为,将两点坐标代入得
,
解之得,
所求的解析式为
(2)将点的坐标代入上述解析式得
,
解之得
本题考查了一次函数的问题,掌握一次函数的性质以及应用是解题的关键.
16、(1)甲的速度为;(2),A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;(3)当时,
【解析】
1根据图象中的数据和题意可以求得甲的速度;
2根据甲的速度可以求得乙的速度,再根据图象和题意即可求得点A的坐标和写出点A表示的实际意义;
3根据题意可以求得当t大于a时对应的函数解析式.
【详解】
(1)由题意可得,
甲的速度为:,
故答案为4;
(2)由1知,乙的速度为8 ,
依题意,可得
解得,,
点A的坐标为:,
A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;
(3)由题意知,
当时,甲乙两人之间的距离是
即直线上另一点的坐标为,
当时,设y与t的函数关系式为:,
直线过点,,
,
解得:,
当时,
考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)(x﹣y)(x+y);(2)﹣2<x≤1
【解析】
分析:(1)根据提公因式法,可分解因式;
(2)根据解不等式,可得每个不等式的解集,根据不等式组的解集是不等式的公共部分,可得答案.
解:(1)原式=(x﹣y)(x+y);
(2)解不等式①1,得x>﹣2,
解不等式②,得x≤1,
把不等式①②在数轴上表示如图
,
不等式组的解集是﹣2<x≤1.
【点评】本题考查了因式分解,确定公因式(x﹣y)是解题关键.
18、 (1)见解析;(2) 见解析.
【解析】
(1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;
(2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
∵BE=DF,∴OE=OF.
在△AOE与△COF中,
∴△AOE≌△COF(SAS).
(2)由(1)得△AOE≌△COF,
∴∠OAE=∠OCF,∴AE∥CF.
又∵AH∥CG,∴四边形AGCH是平行四边形.
∵AC平分∠HAG,∴∠HAC=∠GAC.
∵AH∥CG,∴∠HAC=∠GCA,
∴∠GAC=∠GCA,∴CG=AG,
∴□AGCH是菱形.
本题考查全等三角形的判定与性质,菱形的判定,难度适中,利用SAS证明△AOE≌△COF是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、π+2
【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.
【详解】
原式=.
故答案为:.
本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.
20、1.
【解析】
解:设售价至少应定为x元/千克,
依题可得方程x(1-5%)×80≥760,
解得x≥1
故答案为1.
本题考查一元一次不等式的应用.
21、y=6+0.3x
【解析】
试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.
考点:一次函数的应用.
22、100
【解析】
根据五边形内角和即可求解.
【详解】
∵五边形的内角和为(5-2)×180°=540°,
∴∠E=540°-()=540°-440°=100°,
故填100.
此题主要考查多边形的内角和,解题的关键是熟知多边形的内角和公式.
23、1.
【解析】
是正整数,则1n一定是一个完全平方数,即可求出n的最小值.
【详解】
解:∵是正整数,
∴1n一定是一个完全平方数,
∴整数n的最小值为1.
故答案是:1.
本题考查了二次根式的定义,理解是正整数的条件是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4).
【解析】
(1)利用待定系数法即可求得;
(2)利用两点法画出直线即可;
(3)把x=﹣5代入解析式,即可判断;
(4)求得直线与坐标轴的交点,即可求得.
【详解】
解:(1)设一次函数的解析式为y=kx+b
∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点
∴,
解得:
∴一次函数的表达式为y=3x﹣2;
(2)描出A、B点,作出一次函数的图象如图:
(3)由(1)知,一次函数的表达式为y=3x﹣2
将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4
∴(﹣5,﹣4)不在这个函数的图象上;
(4)由(1)知,一次函数的表达式为y=3x﹣2
令x=0,则y=﹣2,令y=0,则3x﹣2=0,
∴x=,
∴该函数图象与坐标轴围成的三角形面积为:×2×=.
本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.
25、(1)18;(2)见解析
【解析】
(1)过点A作AH⊥BC于H,由AC=BC,∠ABC=75°,得出∠ACB=30°,则AH=AC=BC=3,S平行四边形ABCD=2S△ABC=2×BC•AH,即可得出结果;
(2)过点A作AN∥CE,交BG于N,则∠ECA=∠CAN,由E是AB中点得出EF是△ABN的中位线,则EF=AN,证明∠GBC=∠ECA,∠GBC=∠G,∠ACB=∠CAG得出∠ECB=∠ECA=∠CAN=∠GAN,推出∠GAN=∠G,则AN=GN,由平行线的性质得出==1,得出BF=FN,即可得出结论.
【详解】
(1)解:作,垂足为,则
∵,
∴ ,
∴,
∴;
(2)过点A作AN∥CE,交BG于N,如图2所示:
则∠ECA=∠CAN,
∵E是AB中点,
∴EF是△ABN的中位线,
∴EF=AN,
∵AC=BC,E是AB中点,
∴∠ECB=∠ECA,
∵∠GBC=∠ECB,
∴∠GBC=∠ECA,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠GBC=∠G,∠ACB=∠CAG,
∴∠ECB=∠ECA=∠CAN=∠GAN,
∴∠GAN=∠G,
∴AN=GN,
∵EF∥AN,
,
∴BF=FN,
∴GF=GN+FN=AN+BF,
∴GF=BF+2EF.
考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质、全等三角形的判定与性质、三角形中位线的判定与性质、平行四边形与三角形面积的计算等知识,熟练掌握平行四边形的性质、构建三角形中位线、证明等腰三角形是解题的关键.
26、(1)y=-x+5;(2)△AOB 的面积为21;(3)x<2.
【解析】
(1)将A(m,4)代入 y=2x ,得A 点坐标为(2,4),再代入y=ax+5中即可得到解析式,
(2)求出B的坐标,根据A,B的坐标表示出△ABC的底和高即可解题,
(3)根据图像找点A的左侧即可解题.
【详解】
(1)∵函数 y=2x 的图象过点 A(m,4),
∴4=2m,解得 m=2,
∴A 点坐标为(2,4).
∵y=ax+5 的图象过点 A,
∴2a+5=4,解得 a=- ,
∴一次函数 y=ax+5 的解析式为 y=-x+5;
(2)∵y=- x+5,
∴y=1 时,- x+5=1.解得 x=11,
∴B(11,1),OB=11,
∴△AOB 的面积= ×11×4=21 ;
(3)由图形可知,不等式 2x<ax+5 的解集为 x<2.
本题考查了一次函数和正比例函数的交点、解析式的求法和增减性问题,综合性较大,中等难度,熟悉一次函数的性质是解题关键.
题号
一
二
三
四
五
总分
得分
x
1
0
2
y
3
m
5
2024-2025学年山西省平遥县数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年山西省平遥县数学九上开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山西省(大同地区)九上数学开学教学质量检测试题【含答案】: 这是一份2024-2025学年山西省(大同地区)九上数学开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省萍乡市数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年江西省萍乡市数学九上开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。