终身会员
搜索
    上传资料 赚现金
    2024-2025学年山西省忻州市(偏关致远中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年山西省忻州市(偏关致远中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】01
    2024-2025学年山西省忻州市(偏关致远中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】02
    2024-2025学年山西省忻州市(偏关致远中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山西省忻州市(偏关致远中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

    展开
    这是一份2024-2025学年山西省忻州市(偏关致远中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知一次函数y=kx+b(k≠0),若k+b=0,则该函数的图像可能是
    A.B.
    C.D.
    2、(4分)若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为( )
    A.B.2020C.2019D.2018
    3、(4分)以下各组数中,能作为直角三角形的三边长的是
    A.6,6,7B.6,7,8C.6,8,10D.6,8,9
    4、(4分)是整数,那么整数x的值是( )
    A.6和3B.3和1C.2和18D.只有18
    5、(4分)在平面直角坐标系中,点在( )
    A.轴正半轴上B.轴负半轴上C.轴正半轴上D.轴负半轴上
    6、(4分)如图,直线与直线交于点,则方程组解是( )
    A.B.C.D.
    7、(4分)下列多项式中,不是完全平方式的是
    A.B.C.D.
    8、(4分)如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;
    ④a=1.其中正确结论的个数是( )
    A.4个B.3个C.2个D.1个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
    10、(4分)函数y=的自变量x的取值范围为_____.
    11、(4分)如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S□AEPH=______.
    12、(4分)如图在平面直角坐标系xOy中,直线l经过点A(-1,0),点A1,A2,A3,A4,A5,……按所示的规律排列在直线l上.若直线 l上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点An(n为正整数)的横坐标为2015,则n=___________.
    13、(4分)如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在□ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于点F.
    (1)若∠F=20°,求∠A的度数;
    (2)若AB=5,BC=8,CE⊥AD,求□ABCD的面积.
    15、(8分)(1)如图1,在矩形中,对角线与相交于点,过点作直线,且交于点,交于点,连接,且平分.
    ①求证:四边形是菱形;
    ②直接写出的度数;
    (2)把(1)中菱形进行分离研究,如图2,分别在边上,且,连接为的中点,连接,并延长交于点,连接.试探究线段与之间满足的关系,并说明理由;
    (3)把(1)中矩形进行特殊化探究,如图3,矩形满足时,点是对角线上一点,连接,作,垂足为点,交于点,连接,交于点.请直接写出线段三者之间满足的数量关系.
    16、(8分)已知△ABC的三条边长分别为2,5,6,在△ABC所在平面内画一条直线,将△ABC分成两个三角形,使其中一个三角形为等腰三角形.
    (1)这样的直线最多可以画 条;
    (2)请在三个备用图中分别画出符合条件的一条直线,要求每个图中得到的等腰三角形腰长不同,尺规作图,不写作法,保留作图痕迹.
    17、(10分)某校八年级学生进行了一次视力调查,绘制出频数分布表和频数直方图的一部分如下:
    请根据图表信息完成下列各题:
    (1)在频数分布表中,的值为 ,的值是 ;
    (2)将频数直方图补充完整;
    (3)小芳同学说“我的视力是此次调查所得数据的中位数”,你觉得小芳同学的视力应在哪个范围内?
    (1)若视力在不小于1.9的均属正常,请你求出视力正常的人数占被调查人数的百分比.
    18、(10分)正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.
    (1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;
    (2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;
    (3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.

    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若二次函数y=ax2﹣bx+5(a≠5)的图象与x轴交于(1,0),则b﹣a+2014的值是_____.
    20、(4分)函数自变量的取值范围是_________.
    21、(4分)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为_____.
    22、(4分)一次函数的图像在轴上的截距是__________.
    23、(4分)在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。
    二、解答题(本大题共3个小题,共30分)
    24、(8分)探索发现:
    ……
    根据你发现的规律,回答下列问题:
    (1)= ,= ;
    (2)利用你发现的规律计算:
    (3)利用规律解方程:
    25、(10分)类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.
    (1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;
    (2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;
    (3)如图2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.
    26、(12分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.
    根据图表信息,解答下列问题:
    (1)本次调查的总人数为______,表中m的值为_______;
    (2)请补全条形统计图;
    (3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.
    【详解】
    解:由题意可知:当k<0时,则b>0,图象经过一、二、四象限;
    当k>0时,则b<0,图象经过一、三、四象限.
    故选A.
    本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.
    2、B
    【解析】
    对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.
    【详解】
    对于一元二次方程a(x-1)2+b(x-1)-1=0,
    设t=x-1,
    所以at2+bt-1=0,
    而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,
    所以at2+bt-1=0有一个根为t=2019,
    则x-1=2019,
    解得x=1,
    所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.
    故选B.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    3、C
    【解析】
    分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.
    【详解】
    解:A、,不能构成直角三角形;
    B、,不能构成直角三角形;
    C、,能构成直角三角形;
    D、,不能构成直角三角形;
    故选C.
    考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
    4、C
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    解:原式=,
    ∵是整数,
    ∴或,
    解得:x=2或x=18,
    故选:C.
    本题考查二次根式的运算,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
    5、D
    【解析】
    依据坐标轴上的点的坐标特征即可求解.
    【详解】
    解:∵点(1,-5),横坐标为1
    ∴点(1,-5)在y轴负半轴上
    故选:D.
    本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为1,y轴上点的横坐标为1.
    6、B
    【解析】
    根据一次函数与二元一次方程组的关系解答即可.
    【详解】
    ∵直线与直线交于点,
    ∴方程组即的解是.
    故选B.
    本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.
    7、D
    【解析】
    根据完全平方公式即可求出答案.
    【详解】
    A.原式,故错误;
    B.原式,故错误;
    C.原式,故错误;
    故选.
    本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
    8、B
    【解析】
    ①由直线解析式y=-3x+3求出AO=3,BO=1,即可求出△ABO的面积;
    ②证明△BAO≌△CBN即可得到结论;
    ③联立方程组,求出交点坐标即可得到结论;
    ④如图作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出点D坐标即可解决问题.
    【详解】
    如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,
    ①∵直线y=-3x+3与x轴、y轴分别交于B、A两点,
    ∴点A(0,3),点B(1,0),
    ∴AO=3,BO=1,
    ∴△ABO的面积=,故①错误;
    ②∵四边形ABCD是正方形,
    ∴AB=AD=DC=BC,∠ABC=90°,
    ∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,
    ∴∠BAO=∠CBN,
    在△BAO和△CBN中,

    ∴△BAO≌△CBN,
    ∴BN=AO=3,CN=BO=1,
    ∴ON=BO+BN=1+3=4,
    ∴点C的坐标是(4,1),故②正确;
    ③联立方程组,解得,y=,
    即点E到x轴的距离是,故③正确;
    ④由②得DF=AM=BO=1,CF=DM=AO=3,
    ∴点F(4,4),D(3,4),
    ∵将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,
    ∴把y=4代入y=3x-2得,x=2,
    ∴a=3-2=1,
    ∴正方形沿x轴负方向平移a个单位长度后,点D恰好落在直线y=3x-2上时,a=1,
    故④正确.
    故选B.
    【点评】
    本题考查反比例函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、0.5
    【解析】
    首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
    【详解】
    解:由题意可得AC+BC+AB=,
    ∵∠C=90°,则AB为斜边等于2,
    ∴AC+BC=,
    再根据勾股定理得出,
    根据完全平方公式,
    将AC+BC=和代入公式得:,
    即=1,
    ∴Rt△ABC面积=0.5=0.5.
    本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
    10、x≠1.
    【解析】
    根据分式有意义的条件,即可快速作答。
    【详解】
    解:根据分式有意义的条件,得:x-1≠0,即x≠1;故答案为:x≠1。
    本题考查了函数自变量的取值范围,但分式有意义的条件是解题的关键。
    11、1
    【解析】
    由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH=S四边形PFCG.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由已知条件即可得出答案.
    【详解】
    解:∵EF∥BC,GH∥AB,
    ∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
    ∴S△PEB=S△BGP,
    同理可得S△PHD=S△DFP,S△ABD=S△CDB,
    ∴S△ABD-S△PEB-S△PHD=S△CDB-S△BGP-S△DFP,
    即S四边形AEPH=S四边形PFCG.
    ∵CG=2BG,S△BPG=1,
    ∴S四边形AEPH=S四边形PFCG=1×1=1;
    故答案为:1.
    本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.
    12、4031.
    【解析】
    试题分析:本题主要考查了一次函数图象上点的坐标特征,解题的关键是找出坐标的规律.观察①n为奇数时,横坐标纵坐标变化得出规律;②n为偶数时,横坐标纵坐标变化得出规律,再求解.
    试题解析:观察①n为奇数时,横坐标变化:-1+1,-1+2,-1+3,…-1+,
    纵坐标变化为:0-1,0-2,0-3,…-,
    ②n为偶数时,横坐标变化:-1-1,-1-2,-1-3,…-1-,
    纵坐标变化为:1,2,3,…,
    ∵点An(n为正整数)的横坐标为2015,
    ∴-1+=2015,解得n=4031,
    故答案为4031.
    考点:一次函数图象上点的坐标特征.
    13、
    【解析】
    延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.
    【详解】
    如图,
    延长EF交CB于M,连接DM,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠A=∠BCD=90°,
    ∵将△ADE沿直线DE对折得到△DEF,
    ∴∠DFE=∠DFM=90°,
    在Rt△DFM与Rt△DCM中,,
    ∴Rt△DFM≌Rt△DCM(HL),
    ∴MF=MC,
    ∴∠MFC=∠MCF,
    ∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,
    ∴∠MFB=∠MBF,
    ∴MB=MC,
    ∴MF=MC=BM=,设AE=EF=x,
    ∵BE2+BM2=EM2,
    即(1-x)2+()2=(x+)2,
    解得:x=,
    ∴AE=,
    故答案为:.
    本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) 140°;(2) S▱ABCD=32.
    【解析】
    (1)∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,

    ∵∠ABC的平分线交AD于点E,
    ∴∠ABE=∠CBF,


    (2)∵AE=AB=5,AD=BC=8,CD=AB=5,
    ∴DE=AD−AE=3,
    ∵CE⊥AD,

    ∴▱ABCD的面积=AD⋅CE=8×4=32.
    15、 (1)①见解析;②60°;(1)见解析;(3)见解析.
    【解析】
    (1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=1∠ADB,推出∠ADB=30°,即可解决问题;
    (1)延长到,使得,连接,由菱形性质,,得,由此,由ASA可证得,由此,故
    ,由,可证得是等边三角形,可得,,由SAS可证,可得,即是等边三角形,
    在中,由,,可得,由此可得;
    (3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
    【详解】
    (1)①证明:如图1中,
    ∵四边形是矩形,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    ∵,
    ∴四边形是平行四边形,
    ∵,
    ∴,
    ∴四边形是菱形.
    ②∵四边形是菱形,
    ∴,
    ∵平分,
    ∴,
    ∴=,
    ∵四边形是矩形,
    ∴A=,
    ∴+=,
    ∴==,
    ∴;
    (1)结论:.
    理由:如图1中,延长到,使得,连接.
    ∵四边形是菱形,,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴是等边三角形,
    ∴,
    在和中,

    ∴,
    ∴,,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴是等边三角形,
    在中,∵,,
    ∴,
    ∴.
    (3)结论:.
    理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
    ∵∠FAD+∠DEF=90°,
    ∴AFED四点共圆,
    ∴∠EDF=∠DAE=45°,∠ADC=90°,
    ∴∠ADF+∠EDC=45°,
    ∵∠ADF=∠CDM,
    ∴∠CDM+∠CDE=45°=∠EDG,
    在△DEM和△DEG中,

    ∴△DEG≌△DEM,
    ∴GE=EM,
    ∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
    ∴∠ECM=90°,
    ∴EC1+CM1=EM1,
    ∵EG=EM,AG=CM,
    ∴GE1=AG1+CE1.
    本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
    16、(1)7;(2)见解析
    【解析】
    (1)根据等腰三角形的性质分别利用AB.、BC、AC为底以及AB、BC、AC为腰得出符合题意的图形即可;(2)根据等腰三角形和垂直平分线的性质作图即可.
    【详解】
    解:(1)以点A为圆心,AB为半径做弧,交AC于点M1;以点C为圆心,BC为半径做弧,交AC于点M2;以点B为圆心,BC为半径做弧,交AC于点M3;交AB于点M4;作AB的垂直平分线,交AC于点M5;作AC的垂直平分线,交AB于点M6;作BC的垂直平分线,交AC于点M7;共7条
    故答案为:7
    (2)如图即为所求.
    说明:如上7种作法均可.
    此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.
    17、(1)60,0.2;(2)见解析;(3)在之间;(1)
    【解析】
    (1)用频数除以对应的频率可得调查的总人数,再用总人数乘以0.3即可得a的值,用10除以总人数即可得b的值;
    (2)根据a的值补图即可;
    (3)根据总人数和中位数的定义可知中位数所在的小组,即为小芳的视力范围;
    (1)根据表格数据求出视力大于等于1.9的学生人数,再除以总人数即可得百分比.
    【详解】
    (1)调查总人数为(人)
    则,
    故答案为:60,0.2.
    (2)如图所示,
    (3)调查总人数为200人,由表可知中位数在之间,
    ∴小芳同学的视力在之间
    (1)视力大于等于1.9的学生人数为60+10=70人,
    ∴视力正常的人数占被调查人数的百分比是:
    本题考查读频数直方图和利用统计图获取信息,理解统计表与直方图的关系,掌握中位数的定义是解题的关键.
    18、(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;
    【解析】
    (1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.
    【详解】
    解:(1)AP=EF,AP⊥EF,理由如下:
    连接AC,则AC必过点O,延长FO交AB于M;
    ∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,
    ∴四边形OECF是正方形,
    ∴OM=OF=OE=AM,
    ∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,
    ∴△AMO≌△FOE(AAS),
    ∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,
    故AP=EF,且AP⊥EF.
    (2)题(1)的结论仍然成立,理由如下:
    延长AP交BC于N,延长FP交AB于M;
    ∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,
    ∴四边形MBEP是正方形,
    ∴MP=PE,∠AMP=∠FPE=90°;
    又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,
    ∴AM=PF,
    ∴△AMP≌△FPE(SAS),
    ∴AP=EF,∠APM=∠FPN=∠PEF,
    ∵∠PEF+∠PFE=90°,∠FPN=∠PEF,
    ∴∠FPN+∠PFE=90°,即AP⊥EF,
    故AP=EF,且AP⊥EF.
    (3)题(1)(2)的结论仍然成立;
    如右图,延长AB交PF于H,证法与(2)完全相同.

    利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    把(1,0)代入y=ax2-bx+5得a-b+5=0,然后利用整体代入的方法计算b-a+2014的值.
    【详解】
    解:把(1,0)代入y=ax2-bx+5得a-b+5=0,
    所以b-a=5,
    所以b-a+2014=5+2014=1.
    故答案为1.
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.
    20、
    【解析】
    根据分式有意义的条件求自变量的取值范围即可.
    【详解】
    解:由题意可知:x+2018≠0
    解得x≠-2018
    故答案为:.
    本题考查求自变量的取值范围,掌握分式成立的条件分母不能为零是本题的解题关键.
    21、45°.
    【解析】
    首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.
    【详解】
    解:过点B作BD∥l,
    ∵直线l∥m,
    ∴BD∥l∥m,
    ∴∠4=∠1,∠2=∠3,
    ∴∠1+∠2=∠3+∠4=∠ABC,
    ∵∠ABC=45°,
    ∴∠1+∠2=45°.
    故答案为:45°.
    此题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.
    22、1
    【解析】
    求得一次函数与y轴的交点的纵坐标即为一次函数y=x+1的图象在y轴上的截距.
    【详解】
    解:令x=0,得y=1;
    故答案为:1.
    本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.
    23、8或4
    【解析】
    由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.
    【详解】
    解:∵AD=9,AE:ED=1:2,
    ∴AE=3,ED=6,
    又∵EF=2>AB,分情况讨论:
    如下图:
    当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,
    CF=GD=ED+GE,在RT三角形GFE中,GE==2,
    则此时CF=6+2=8;
    如下图:
    当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,
    则此时CF=6-2=4;
    综上,CF的长为8或4.
    本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(1)见解析.
    【解析】
    (1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和
    (2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.
    (1)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.
    【详解】
    解:(1), ;
    故答案为
    (2)原式= ;
    (1)已知等式整理得:
    所以,原方程即: ,
    方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,
    解得:x=1,
    检验:把x=1代入x(x+5)=24≠0,
    ∴原方程的解为:x=1.
    本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.
    25、(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,,
    【解析】
    (1)根据勾股定理计算BC的长度,
    (2)根据对角线互相垂直平分的四边形是菱形判断,
    (3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.
    【详解】
    (1)∵BD⊥CD
    ∴∠BDC=90°,BC>CD
    ∵在“准等边四边形”ABCD中,BC≠AB,
    ∴AB=AD=CD=3,
    ∵BD=4,
    ∴BC=,
    (2)正确.
    如图所示:
    ∵AB=AD
    ∴ΔABD是等腰三角形.
    ∵AC⊥BD.
    ∴AC垂直平分BD.
    ∴BC=CD
    ∴CD =AB=AD=BC
    ∴四边形 ABCD是菱形.
    (3)存在四种情况,
    如图2,四边形ABPC是“准等边四边形”,过C作于F,则,
    ∵EP是AB的垂直平分线,
    ∴ ,
    ∴四边形AEFC是矩形,
    在中, ,
    ∴ ,





    如图4,四边形ABPC是“准等边四边形”,
    ∵ ,
    ∴是等边三角形,
    ∴ ;
    如图5,四边形ABPC是“准等边四边形”,

    ∵ ,PE是AB的垂直平分线,
    ∴ E是AB的中点,
    ∴ ,


    如图6,四边形ABPC是“准等边四边形”,过P作于F,连接AP,
    ∵,
    ∴,

    本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.
    26、 (1)120;45%;(2)补图见解析;(3)平均每天得到约1980人的肯定.
    【解析】
    (1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m
    (2)计算出比较满意的n的值,然后补全条形图即可
    (3)每天接待的游客×(非常满意+满意)的百分比即可
    【详解】
    (1)12÷10%=120;54÷120×100%=45%
    (2)比较满意:120×40%=48(人);补全条形统计图如图.
    (3)3600×(45%+10%)=1980(人).
    答:该景区服务工作平均每天得到约1980人的肯定.
    统计图有关的计算是本题的考点,熟练掌握其特点并正确计算是解题的关键.
    题号





    总分
    得分
    满意度
    人数
    所占百分比
    非常满意
    12
    10%
    满意
    54
    m
    比较满意
    n
    40%
    不满意
    6
    5%
    相关试卷

    2024-2025学年山西省吕梁市兴县康宁中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年山西省吕梁市兴县康宁中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广州市东环中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年广州市东环中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map