2024-2025学年陕西省汉中南郑区五校联考九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=中自变量x的取值范围是( )
A.x≠2B.x≠0C.x≠0且x≠2D.x>2
2、(4分)化简结果正确的是( )
A.xB.1C.D.
3、(4分)如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是( )
A.△CDF≌△EBC
B.∠CDF=∠EAF
C.CG⊥AE
D.△ECF是等边三角形
4、(4分)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月约节水情况.见表:
请你估计这400名同学的家庭一个月节约用水的总量大约是( )
A.130m3B.135m3C.6.5m3D.260m3
5、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,
方差分别是,,,.在本次射击测试中,成绩最
稳定的是( )
A.甲B.乙C.丙D.丁
6、(4分)到三角形三条边的距离相等的点是三角形( )的交点.
A.三条中线B.三条角平分线C.三条高D.三条边的垂直平分线
7、(4分)将下列多项式因式分解,结果中不含因式x-1的是( )
A.x2-1B.x2+2x+1C.x2-2x+1D.x(x-2)+(2-x)
8、(4分)如图,A,B,C是⊙O上三点,∠α=140°,那么∠A等于( ).
A.70°B.110°C.140°D.220°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________
10、(4分)在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是___kg.
11、(4分)如图,OA1=A1A2=A2A3=A3A4=…=An-1An=1,∠OA1A2=∠OA2A3=∠OA3a4=…=∠OAn-1An=90°(n>1,且n为整数).那么OA2=_____,OA4=______,…,OAn=_____.
12、(4分)已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是 .
13、(4分)若是方程的解,则代数式的值为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差,数据:11,15,18,17,10,19的方差:
(1)分别求甲、乙两段台阶的高度平均数;
(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?
(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.
15、(8分)己知反比例函数(常数,)
(1)若点在这个函数的图像上,求的值;
(2)若这个函数图像的每一支上,都随的增大而增大,求的取值范围;
(3)若,试写出当时的取值范围.
16、(8分)为迎接省“义务教育均衡发展验收”,某广告公司承担了制作宣传牌任务,安排甲、乙两名工人制作,由于乙工人采用了新式工具,其工作效率比甲工人提高了20%,同样制作30个宣传牌,乙工人比甲工人节省了一天时间:
(1)求甲乙两名工人每天各制作多少个宣传牌?
(2)现在需要这两名工人合作完成44个宣传牌制作在务,应如何分配,才能让两名工人同时完成任务?
17、(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,E,F分别是OA和OC的中点.
(1)求证:DE=BF.
(2)求证:四边形BFDE是平行四边形.
18、(10分)已知:在平面直角坐标系中,边长为8的正方形OABC的两边在坐标轴上(如图).
(1)求点A,B,C的坐标.
(2)经过A,C两点的直线l上有一点P,点D(0,6)在y轴正半轴上,连PD,PB(如图1),若PB2﹣PD2=24,求四边形PBCD的面积.
(3)若点E(0,1),点N(2,0)(如图2),经过(2)问中的点P有一条平行于y轴的直线m,在直线m上是否存在一点M,使得△MNE为直角三角形?若存在,求M点的坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.
20、(4分)如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.
21、(4分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为_____.
22、(4分)如图为某班35名学生投篮成绩的条形图,其中上面部分数据破损导致数据不完全,已知此班学生投篮成绩的中位数是5,下列选项正确的是_______.
①3球以下(含3球)的人数;②4球以下(含4球)的人数; ③5球以下(含5球)的人数;④6球以下(含6球)的人数.
23、(4分)如图,ABC的周长为16,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在梯形ABCD中,AD∥BC,点E在边BC上,DE∥AB,设.
(1)用向量表示下列向量:;
(2)求作: (保留作图痕迹,写出结果,不要求写作法)
25、(10分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
(1)求点的坐标;
(2)求出的面积;
(3)当的值最小时,求此时点的坐标;
26、(12分)已知△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°.
(1)如图①,点D、E分别在线段AB、AC上. 请直接写出线段BD和CE的位置关系: ;
(2)将图①中的△ADE绕点A逆时针旋转到如图②的位置时,(1)中的结论是否成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)如图③,取BC的中点F,连接AF,当点D落在线段BC上时,发现AD恰好平分∠BAF,此时在线段AB上取一点H,使BH=2DF,连接HD,猜想线段HD与BC的位置关系并证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据分母不为0列式求值即可.
【详解】
由题意得x﹣1≠0,
解得:x≠1.
故选:A.
此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.
2、B
【解析】
根据分式的加减法法则计算即可得出正确选项.
【详解】
解:=.
故选:B.
本题主要考查了分式的加减,同分母分式相加减,分母不变,分子相加减.
3、C
【解析】
A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
DF=BC,
∠CDF=∠EBC,
CD=EB,
∴△CDF≌△EBC(SAS),故A正确;
B.在平行四边形ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故B正确;
C. .当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故C错误;
D. 同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故D正确;
故选C.
点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.
4、A
【解析】
先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.
【详解】
20名同学各自家庭一个月平均节约用水是:
(0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m3),
因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m3),
故选A.
5、C
【解析】
方差越小,成绩越稳定,据此判断即可.
【详解】
解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,
故选C
本题考查了方差的相关知识,属于基础题型,掌握判断的方法是解题的关键.
6、B
【解析】
到三角形三条边距离相等的点是三角形的内心.
【详解】
解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.
故选:B.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
7、B
【解析】
将各选项进行因式分解即可得以选择出正确答案.
【详解】
A. x2﹣1=(x+1)(x-1);
B. x2+2x+1=(x+1)2 ;
C. x2﹣2x+1 =(x-1)2;
D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);
结果中不含因式x-1的是B;
故选B.
8、B
【解析】
解:根据周角可以计算360°﹣∠α=220°,
再根据圆周角定理,得∠A的度数.
∵∠1=360°﹣∠α=220°,
∴∠A=∠1=220°÷2=110°.
故选B.
考点:圆周角定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
【详解】
设最小正方形的边长为1,则小正方形边长为2,
阴影部分面积=2×2×4+1×1×2=18,
白色部分面积=2×2×4+1×1×2=18,
故石子落在阴影区域的概率为.
故答案为:.
本题考查了概率,正确运用概率公式是解题的关键.
10、1.
【解析】
可设小林的体重是xkg,根据平均数公式列出方程计算即可求解.
【详解】
解:设小林的体重是xkg,依题意有
x+2(x+6)=42×3,
解得x=1.
故小林的体重是1kg.
故答案为:1.
考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
11、 2
【解析】
根据勾股定理求出OA2,OA3,OA4,即可发现其内部存在一定的规律性,找出其内在规律即可解题.
【详解】
解:∵,,
∴,
则,,……
所以,
故答案为:,2,.
本题考查勾股定理、规律型:图形的变化类问题,解题的关键是学会探究规律,利用规律解决问题.
12、x<1
【解析】
利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.
【详解】
解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;
故答案为:x<1
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、1
【解析】
根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.
【详解】
解:∵a是方程x2-2x-1=0的一个解,
∴a2-2a=1,
则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=1;
故答案为:1.
本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.
三、解答题(本大题共5个小题,共48分)
14、(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm,游客行走更舒服.
【解析】
分析:(1)根据图中所给的数据,利用平均数公式求解即可;
(2)根据平均数、中位数、方差和极差的特征回答即可;
(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.
详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,
乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.
(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.
(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.
点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.
15、(1);(2);(3)
【解析】
(1)把点代入函数即可求解;
(2)根据这个函数图像的每一支上,都随的增大而增大,求出k即可;
(3)当,求出x的范围即可;
【详解】
(1)把点代入函数,得2=
得k=4;
(2)∵这个函数图像的每一支上,都随的增大而增大,求出k即可;
∴k-2<0
∴
(3)当,
∵
∴-3≤≤-2
∴
本题考查的是的反比例函数,熟练掌握反比例函数的性质是解题的关键.
16、 (1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.
【解析】
(1)设甲工人每天完成x个宣传牌,则乙工人每天完成1.2x个宣传牌,根据完成30个宣传牌工作,乙工人比甲工人节省了一天时间列出方程解答即可;
(2)根据(1)中求得的数据,设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,根据所用时间相等列出方程解答即可.
【详解】
解:(1)设甲工人每天制作x个宣传牌,则乙工人每天制(1+20%)x=1.2x个,由题意得
解得x=5
经检验x=5是原方程的解且符合题意
∴1.2x=6
答:甲工人每天制作5个宣传牌,乙工人每天制作6个.
(2) 设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,
由题意得: ,
解得:a=20,
44-a=24,
答:给甲分配制作20个,乙制作24个 ,才能让两名工人同时完成任务.
故答案为:(1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.
本题考查分式方程的实际运用、一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
17、(1)见解析;(2)见解析.
【解析】
(1)根据平行四边形的判定和性质即可得到结论;
(2)根据平行四边形的判定和性质即可得到结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴BO=OD,AO=OC,
又∵E,F分别为AO,OC的中点,
∴EO=OF,
∴四边形BFDE是平行四边形,
∴DE=BF;
(2)∵四边形ABCD是平行四边形,
∴BO=OD,AO=OC,
又∵E,F分别为AO,OC的中点,
∴EO=OF,
∴四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
18、(1)A(8,0),B(8,8),C(0,8);(2)15;(3)M的坐标是(3,7)或(3,2)
【解析】
(1)根据正方形的性质直接写出点A,B,C的坐标.
(2)求得直线AC的解析式为y=-x+8,过点P作平行于x轴的直线,根据题意可求点P的坐
标是:P(3,5),故四边形PBCD的面积=S +S
(3)根据第(2)中求得的P(3,5),设M(3,t),分类讨论:
①当∠MEN=90°时,ME=3+(t-1)2,EN=1+2,MN=1+t,利用勾股定理求得t的值,
②当∠MNE=90°时,同理可求:M(3,2).
③显然∠EMN不可能等于90°.
综合可得:使△MNE为直角三角形的点是M(3,7)或M(3,2),
【详解】
(1)∵如图1,四边形OABC是正方形,且其边长为8,
∵.OA=AB=BC=OC=8,
∴A(8,0),B(8,8),C(0,8),
(2)设直线AC的解析式为y=k+8,
将A(8,0)代入,得0=8k+8,
解得k=-1
故直线AC的解析式为y=-x+8.
设P(x,-x+8)
∵PB-PD=24,D(0,6),B(8,8),
∴(x-8) +(-x+8-8) -x-(-x+8-6) =24,
解得x=3,
∴点P的坐标是:P(3,5),
∴四边形PBCD的面积=S +S =×2×3+×8×3=15
(3)根据第(2)中求得的P(3,5),设M(3,t),分类讨论:
①当∠MEN=90°时, ME =3+(t-1) ,EN=1+2,MN=1+t
∴MN=ME+EN
∴1+t=9+t-2t+1+5,
∴t=7,
∴M(3,7)
②当∠MNE=90°时,同理可求:M(3,2)
③显然∠EMN不可能等于90°
综合可得:使△MNE为直角三角形的点M的坐标是(3,7)或(3,2).
此题考查了四边形综合题,利用待定系数法求一次函数的解析式,正方形的性质,坐标与图形的特点,三角形面积的求法,勾股定理等知识点,第(3)问难度较大,运用了分类讨论的思想和数形结合的思想.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5.1×10-1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000051=5.1×10-1.
故答案为:5.1×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
20、
【解析】
先根据得出,再求出的度数,由即可得出结论.
【详解】
,,
,
,
,
.
故答案为:.
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
21、1
【解析】
由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,
∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,
∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,
∴AO'=AC+O'C=6,
∴AB'=;
故答案为1.
此题考查菱形的性质,平移的性质,勾股定理,解题关键在于得到AO=OC=AC=2,OB=OD=BD=8.
22、①②④
【解析】
根据题意和条形统计图中的数据可以求得各个选项中对应的人数,从而可以解答本题.
【详解】
因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图的范围在6以上,所以投4个球的有7人.可得:3球以下(含3球)的人数为10人,4球以下(含4球)的人数10+7=17人,6球以下(含6球)的人数35-1=1.故只有5球以下(含5球)的人数无法确定.
故答案为①②④
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.同时理解中位数的概念.
23、1
【解析】
根据切线长定理得出AF=AE,CE=CD,BF=BD,再根据△ABC的周长等于16得出AF+AE=16,即可求出AE.
【详解】
解:如图,
∵AB、AC的延长线与圆分别相切于点E、F,
∴AF=AE,
∵圆O与BC相切于点D,
∴CE=CD,BF=BD,
∴BC=DC+BD=CE+BF,
∵△ABC的周长等于16,
∴AB+AC+BC=16,
∴AB+AC+CE+BF=16,
∴AF+AE=16,
∴AF=1.
故答案为1
此题考查了切线长定理,掌握切线长定理即从圆外一点引圆的两条切线,切线长相等是本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1),(2)见解析.
【解析】
(1)AD∥BC,DE∥AB,可证得四边形ABED是平行四边形,然后利用平行四边形法则与三角形法则求解即可求得答案;
(2)首先作,连接AF,则即为所求.
【详解】
(1)∵AD∥BC,DE∥AB,
∴四边形ABED是平行四边形,
∴
∴
∴
∴;
(2)首先作,连接AF,则即为所求.
此题考查平面向量,解题关键在于灵活运用向量的转化即可.
25、 (1)点;(2);(3)点.
【解析】
(1)联立两直线解析式组成方程组,解得即可得出结论;
(2)将代入,求出OB的长,再利用 (1)中的结论点,即可求出的面积;
(3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.
【详解】
解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,
∴
解得:
∴点;
(2) ∵把代入,
解得:,
∴,
又∵点,
∴
;
(3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),
连接CA'交y轴于点P,此时,PC+PA最小,
最小值为CA'=,
由(1)知,,
∵A'(3,0),
∴直线A'C的解析式为,
∴点.
此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.
26、(1)BD⊥CE;(2)成立,理由见解析;(3)HD⊥BC,证明见解析;
【解析】
(1)根据等腰直角三角形的性质解答;(2)延长延长BD、CE,交于点M,证明△ABD≌△ACE,根据全等三角形的性质、垂直的定义解答;(3)过点D作DN⊥AB于点N,根据题意判定△NDH是等腰直角三角形,从而使问题得解.
【详解】
解:(1)∵△ABC和△ADE都是等腰直角三角形且点D、E分别在线段AB、AC上,
∴BD⊥CE;
(2)成立
证明:延长BD、CE,交于点M
∵∠BAC=∠DAE=90°
∴∠BAC-∠DAC =∠DAE-∠DAC
即∠BAD=∠CAE
又∵AB=AC,AD=AE
∴△ABD≌△ACE(SAS)
∴∠ABD=∠ACE
在等腰直角△ABC中,∠ABD +∠DBC+∠ACB=90°
∴∠ACE +∠DBC+∠ACB=90°
∴在△MBC中,∠M=180°-(∠ACE +∠DBC+∠ACB)= 90°
∴BD⊥CE
(3)HD⊥BC
证明:过点D作DN⊥AB于点N.
∵AB=AC,BF=CF,
∴AF⊥BC
又∵AD平分∠BAF,且DN⊥AB
∴DN=DF
在Rt△BND中,∠B=45°
∴∠NDB=45°,NB=ND
∴NB=DF
∵BH=2DF
∴BH=2NB
而BH=NB+NH
∴NB=NH=ND
∴△NDH是等腰直角三角形,∠NDH=45°
∴∠HDB=∠NDH +∠NDB= 45°+ 45°=90°
∴HD⊥BC
本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.
题号
一
二
三
四
五
总分
得分
节水量/m3
0.2
0.25
0.3
0.4
0.5
家庭数/个
2
4
6
7
1
2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】: 这是一份2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省垦利区四校联考九上数学开学综合测试模拟试题【含答案】: 这是一份2024-2025学年山东省垦利区四校联考九上数学开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,四象限D.两支图象关于原点对称,解答题等内容,欢迎下载使用。
2024-2025学年江西省吉安吉州区五校联考九上数学开学监测试题【含答案】: 这是一份2024-2025学年江西省吉安吉州区五校联考九上数学开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。