终身会员
搜索
    上传资料 赚现金
    2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】01
    2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】02
    2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】

    展开
    这是一份2024-2025学年陕西省岐山县联考数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,平分交于点,平分,,交于点,若,则( )
    A.75B.100C.120D.125
    2、(4分)如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
    A.60°B.65°C.75°D.80°
    3、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,DE平分∠ADC,则BE的长为( )
    A.1B.2C.3D.4
    4、(4分)如图,在中,于点D,且是的中点,若则的长等于( )
    A.5B.6C.7D.8
    5、(4分)在中,若斜边,则边上的中线的长为( )
    A.1B.2C.D.
    6、(4分)已知,则式子的值是( )
    A.48B.C.16D.12
    7、(4分)把根号外的因式移入根号内,结果( )
    A.B.C.D.
    8、(4分)函数y=中自变量x的取值范围是( )
    A.x>3B.x<3C.x≤3D.x≥﹣3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知□ABCD和正方形CEFG有一个公共的顶点C,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数是_________.
    10、(4分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.
    11、(4分)已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.
    12、(4分)如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.
    13、(4分)如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)电话计费问题,下表中有两种移动电话计费方式:
    温馨揭示:方式一:月使用费固定收(月收费:38元/月);主叫不超限定时间不再收费(80分钟以内,包括80分钟);主叫超时部分加收超时费(超过部分0.15元/);被叫免费。
    方式二:月使用费0元(无月租费);主叫限定时间0分钟;主叫每分钟0.35元/;被叫免费。
    (1)设一个月内用移动电话主叫时间为,方式一计费元,方式二计费元。写出和关于的函数关系式。
    (2)在平面直角坐标系中画出(1)中的两个函数图象,记两函数图象交点为点,则点的坐标为_____________________(直接写出坐标,并在图中标出点)。
    (3)根据(2)中函数图象,请直接写出如何根据每月主叫时间选择省钱的计费方式。
    15、(8分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
    (1)求k1,k2,b的值;
    (2)求△AOB的面积;
    (3)请直接写出不等式≥k2x+b的解.
    16、(8分) “大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.
    17、(10分)如图,在平面直角坐标系中,菱形的顶点在反比例函数图象上,直线交于点,交正半轴于点,且
    求的长:
    若,求的值.
    18、(10分)先化简,再求代数式的值,其中.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) 若A(x1,y1)和B(x2,y2)在反比例函数的图象上,且0<x1<x2,则y1与y2的大小关系是y1 y2;
    20、(4分)如图,在中,,,以点为圆心,以任意长为半径作弧,分别交、于点、,再分别以点、为圆心,以大于的长为半径作弧,两弧在内交于点,连结并延长,交于点,则的长为____.
    21、(4分)把多项式因式分解成,则的值为________.
    22、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面积和是9,则正方形D的边长为__________.
    23、(4分)定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在□ABCD中,点M、N分别是AB、CD的中点.求证:DM = BN.
    25、(10分)天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.
    小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x轴,y轴的正方向建立了平面直角坐标系描述各景点的位置.
    小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为”
    请依据小惠同学的描述回答下列问题:
    请在图中画出小惠同学建立的平面直角坐标系;
    表示无梁殿的点的坐标为______;
    表示双环万寿亭的点的坐标为______;
    将表示祈年殿的点向右平移2个单位长度,再向下平移个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是______.
    26、(12分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.
    (1)求这条直线的解析式;
    (2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式;
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.
    【详解】
    ∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE1+CF1=EF1=2.
    故选:B
    本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.
    2、C
    【解析】
    连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
    【详解】
    连接BD,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
    ∵P为AB的中点,
    ∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
    ∴∠PDC=90°,
    ∴由折叠的性质得到∠CDE=∠PDE=45°,
    在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
    故选:C.
    此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
    3、B
    【解析】
    只要证明CD=CE=4,根据BE=BC-EC计算即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB=CD=4,AD=BC=6,
    ∵AD∥BC,
    ∴∠ADE=∠DEC,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠DEC=∠CDE,
    ∴DC=CE=AB=4,
    ∴BE=BC-CE=6-4=2,
    故选B.
    本题考查了平行线性质,等腰三角形的性质和判定,平行四边形性质等知识点,关键是求出BC、CE的长.
    4、D
    【解析】
    由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
    【详解】
    ∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
    ∴DE= AC=5,
    ∴AC=10.
    在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得
    CD= =8.
    故选D
    此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值
    5、D
    【解析】
    再根据直角三角形斜边上的中线等于斜边的一半可得BD=AC.
    【详解】
    ∵BD是斜边AC边上的中线,
    ∴BD=AC=×=.
    故选D.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    6、D
    【解析】
    先通分算加法,再算乘法,最后代入求出即可.
    【详解】
    解:
    =
    =
    =(x+y)(x-y),
    当时,原式=4× =12,
    故选:D.
    本题考查分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
    7、B
    【解析】
    根据 可得 ,所以移入括号内为进行计算即可.
    【详解】
    根据根式的性质可得,所以
    因此
    故选B.
    本题主要考查根式的性质,关键在于求a的取值范围.
    8、B
    【解析】
    解:由题意得,1-x>0,
    解得x<1.
    故选:B.
    本题考查函数自变量取值范围.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、700
    【解析】
    分析:由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.
    详解:∵四边形CEFG是正方形,
    ∴∠CEF=90°,
    ∵∠CED=180°-∠AEF-∠CEF=180°-15°-90°=75°,
    ∴∠D=180°-∠CED-∠ECD=180°-75°-35°=70°,
    ∵四边形ABCD为平行四边形,
    ∴∠B=∠D=70°(平行四边形对角相等).
    故答案为:70°.
    点睛:本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.
    10、y=x+3
    【解析】
    因为一次函数y=kx+3的图象过点A(1,4),
    所以k+3=4,
    解得,k=1,
    所以,该一次函数的解析式是:y=x+3,
    故答案是:y=x+3
    【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).
    11、1.
    【解析】
    根据菱形的性质,菱形的面积=对角线乘积的一半.
    【详解】
    解:菱形的面积是:.
    故答案为1.
    本题考核知识点:菱形面积. 解题关键点:记住根据对角线求菱形面积的公式.
    12、y=x+9.
    【解析】
    根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.
    【详解】
    ∵OC=9,,
    ∴BC=15,
    ∵四边形OABC是矩形,
    ∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,
    ∴C(0,9),
    ∵折叠,
    ∴B′C=BC=15,B′D=BD,
    在Rt△COB′中,OB′==12,
    ∴AB′=15-12=3,
    设AD=m,则B′D=BD=9-m,
    Rt△AB′D中,AD2+B′A2=B′D2,
    即m2+32=(9-m)2,
    解得m=4,
    ∴D(15,4)
    设CD所在直线解析式为y=kx+b,
    把C、D两点坐标分别代入得:,
    解得:,
    ∴CD所在直线解析式为y=x+9,
    故答案为:y=x+9.
    本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.
    13、
    【解析】
    分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
    【详解】
    解:过点E作ME⊥AD,延长ME交BC与N,
    ∵四边形ABCD是矩形
    ∴AD∥BC,且ME⊥DA
    ∴EN⊥BC 且∠A=90°=∠ABC=90°
    ∴四边形ABNM是矩形
    ∴AB=MN=5,AM=BN
    若ME:EN=1:4,如图1
    ∵ME:EN=1:4,MN=5
    ∴ME=1,EN=4
    ∵折叠
    ∴BE=AB=5,AP=PE
    在Rt△BEN中,BN==3
    ∴AM=3
    在Rt△PME中,PE2=ME2+PM2
    AP2=(3﹣AP)2+1
    解得AP=
    若ME:EN=4:1,则EN=1,ME=4,如 图2
    在Rt△BEN中,BN==2
    ∴AM=2
    在Rt△PME中,PE2=ME2+PM2
    AP2=(2﹣AP )2+16
    解得AP=
    若点E在矩形外,如图
    ∵EN:EM=1:4
    ∴EN=,EM=
    在Rt△BEN中,BN==
    ∴AM=
    在Rt△PME中,PE2=ME2+PM2
    AP2=(AP﹣)2+()2
    解得:AP=5
    故答案为,,5.
    本题考查矩形的性质、折叠的性质和勾股定理,注意分情况讨论是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)当时,,当时,,;(2)点的坐标为,见解析;(3)当每月主叫时间小于130分钟时选择方式二省钱;当每月主叫时间等于130分钟时两种方式都一样;当每月主叫时间大于130分钟时选择方式一省钱.
    【解析】
    (1)根据题意即可写出两种资费的关系式;
    (2)根据列表、描点、连线即可画出函数图像,再求出交点坐标A;
    (3)根据函数图像的性质即可求解.
    【详解】
    解:(1)方式一:当时,,
    当时,;
    方式二:;
    或解:(1)方式一:
    化简,得;
    方式二:;
    (2)
    点的坐标为
    (3)由图象可得,
    当每月主叫时间小于130分钟时选择方式二省钱;
    当每月主叫时间等于130分钟时两种方式都一样;
    当每月主叫时间大于130分钟时选择方式一省钱。
    此题主要考查一次函数的应用,解题的关键是根据题意写出函数关系式.
    15、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
    【解析】
    (1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;
    (1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;
    (3)根据两函数图象的上下位置关系,即可得出不等式的解集.
    【详解】
    (1)∵反比例函数y=与一次函数y=k1x+b的图象交于点A(1,4),B(﹣4,m),
    ∴k1=1×4=8,m==﹣1,
    ∴点B的坐标为(﹣4,﹣1).
    将A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,
    解得:,
    ∴k1=8,k1=1,b=1.
    (1)当x=0时,y1=x+1=1,
    ∴直线AB与y轴的交点坐标为(0,1),
    ∴S△AOB=×1×4+×1×1=2.
    (3)观察函数图象可知:
    不等式≥k1x+b的解集为x≤﹣4或0<x≤1.
    本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.
    16、(1)40;(2)详见解析,72°;(3)420人.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用1200乘以样本中最想去B景点的人数所占的百分比即可.
    【详解】
    解:(1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40-8-14-4-6=8(人),
    补全条形统计图为:
    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)1200×=420,
    所以估计“最想去景点B“的学生人数为420人.
    故答案为(1)40;(2)图形见解析,72°;(3)420人.
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
    17、(1)6;(2)4
    【解析】
    (1)首先利用勾股定理求出EF的长,然后结合题意利用菱形的性质证明出△DOE为等腰三角形,由此求出DO,最后进一步求解即可;
    (2)过点A作AN⊥OE,垂足为E,在Rt△AON中,利用勾股定理求出AN的长,然后进一步根据反比例函数的性质求出值即可.
    【详解】
    (1)∵,
    ∴EF=,∠OEF=∠OFE=45°,
    ∵四边形OABC为菱形,
    ∴OA=AB=BC=OC,OB⊥AC,DO=DB,
    ∴△DOE为等腰三角形,
    ∴DO=DE=EF=3,
    ∴OB=2DO=6;
    (2)
    如图,过点A作AN⊥OE,垂足为E,则△ANE为等腰直角三角形,
    ∴AN=NE,
    设AN=,则NE=,ON=,
    在Rt△AON中,由勾股定理可得:,
    解得:,,
    当时,A点坐标为:(,),C点坐标为:(,);
    当时,C点坐标为:(,),A点坐标为:(,);
    ∴.
    本题主要考查了菱形的性质和等腰三角形性质与判定及勾股定理和反比例函数性质的综合运用,熟练掌握相关概念是解题关键.
    18、
    【解析】
    先将括号内式子通分化简,再与右侧式子约分,最后代入求值.
    【详解】
    解:原式
    当时,
    原式
    本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、>;
    【解析】
    试题解析:∵反比例函数中,系数
    ∴反比例函数在每个象限内,随的增大而减小,
    ∴当时,
    故答案为
    20、1.
    【解析】
    根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,
    【详解】
    解:根据作图的方法得:AE平分∠ABC,
    ∴∠ABE=∠CBE
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC=5,
    ∴∠AEB=∠CBE,
    ∴∠ABE=∠AEB,
    ∴AE=AB=3,
    ∴DE=AD﹣AE=5﹣3=1;
    故答案为:1.
    此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.
    21、
    【解析】
    根据多项式的乘法法则计算,然后即可求出m的值.
    【详解】
    ∵=x2+6x+5,
    ∴m=6.
    故答案为:6.
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解是乘法运算的逆运算.
    22、3
    【解析】
    由勾股定理可知,两只角边的平方和等于斜边的平方,在此题中,各边的平方可以代表每个正方形的面积.建立等式,通过移项可得正方形D的面积,再开平方得到边长.
    【详解】
    每个正方形的面积=直角三角形各边的平方
    再由勾股定理可联立等式
    即,又正方形A、B、C的面积和是9
    则,所以,所以正方形D的边长为
    本题考察了直角三角形的勾股定理的应用,务必清楚的是题中每个正方行的面积=直角三角形各边的平方.
    23、
    【解析】
    可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解
    【详解】
    解:
    ①当为顶角时,等腰三角形两底角的度数为:
    ∴特征值
    ②当为底角时,顶角的度数为:
    ∴特征值
    综上所述,特征值为或
    故答案为或
    本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知的底数,要进行判断是底角或顶角,以免造成答案的遗漏.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    根据平行四边形的性质得到AB=CD,AD=BC,∠A=∠C.,利用点M、N分别是AB、CD的中点证得,再证明△ADM≌△CBN即可得到结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴ AB=CD,AD=BC,∠A=∠C.
    又∵点M、N分别是AB、CD的中点,


    ∴ △ADM≌△CBN(SAS)
    ∴ DM = BN.
    此题考查平行四边形的性质,全等三角形的判定与性质,线段中点的性质,根据题中的已知条件确定正确全等三角形的思路是解题的关键.
    25、画平面直角坐标系见解析;,;.
    【解析】
    (1)直接利用回音壁的点的坐标为(0,-2),得出原点位置,建立平面直角坐标系即可;
    (2)利用所画平面直角坐标系得出各点坐标即可;
    (3)利用平移的性质得出七星石的点的坐标.
    【详解】
    画出平面直角坐标系如图;
    表示无梁殿的点的坐标为点;
    表示双环万寿亭的点的坐标为;
    故答案为,;
    表示七星石的点的坐标是.
    故答案为.
    本题考查了平移变换以及用坐标表示地理位置,正确建立平面直角坐标系是解题的关键.
    26、(1)y=-2x+6,(2)n=8,y=4x+1
    【解析】
    (1)把代入函数解析式,可得答案.
    (2)先求D的坐标,再利用待定系数法求解AD的解析式.
    【详解】
    解:(1)∵直线y=-2x+a与y轴交于点C(0,6),

    ∴a=6,
    ∴y=-2x+6,
    ⑵∵点D(-1,n)在y=-2x+6上,



    ∴设直线AD的解析式为y=kx+b,

    解得:
    ∴直线AD的解析式为y=4x+1.
    本题考查的是用待定系数法求一次函数的解析式,掌握待定系数法是解题的关键.
    题号





    总分
    得分
    相关试卷

    2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省武功县数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年陕西省武功县数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省汉中南郑区五校联考九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年陕西省汉中南郑区五校联考九上数学开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map