|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】01
    2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】02
    2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】

    展开
    这是一份2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一个多边形每一个内角都是135º,则这个多边形的边数是 ( )
    A.6B.8C.10D.12
    2、(4分)下列生态环保标志中,是中心对称图形的是
    A.B.
    C.D.
    3、(4分)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )
    A.B.
    C.D.
    4、(4分)下列二次根式中,与是同类二次根式的是( )
    A.B.C.D.
    5、(4分)如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为( )
    A.2B.3C.3D.无法确定
    6、(4分)直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x+c的解集为( )
    A.B.C.D.
    7、(4分)如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为( )
    A.B.5×C.5×D.5×
    8、(4分)已知一次函数的图象如图所示,当时,的取值范围是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)正方形按如图所示的方式放置,点.和. 分别在直线和x轴上,已知点,则Bn的坐标是____________
    10、(4分)一个多边形的内角和是 1440°,则这个多边形是__________边形.
    11、(4分)一次函数y=﹣2x+6的图象与x轴的交点坐标是_____.
    12、(4分)如图,在△ABC中,,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.
    13、(4分)从甲、乙两班分别任抽30名学生进行英语口语测验,两个班测试成绩的方差是,,则_________班学生的成绩比较整齐.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.
    15、(8分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
    (1)求线段CD的长;
    (2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
    (3)当点P在线段AD上运动时,求S与t的函数关系式.
    16、(8分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
    (1)求证:∠A=2∠CBD;
    (2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
    (3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
    17、(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
    根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)
    (1)这6名选手笔试成绩的中位数是 分,众数是 分.
    (2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
    (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
    18、(10分)传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.
    (1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式;
    (2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于x的方程的解为负数,则a的取值范围为______.
    20、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
    21、(4分)已知5+的整数部分为a,5-的小数部分为b,则a+b的值为__________
    22、(4分)在平面直角坐标系xOy中,已知抛物线的顶点在轴上,P,Q()是此抛物线上的两点.若存在实数,使得,且成立,则的取值范围是__________.
    23、(4分)在一个不透明的盒子中装有n个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知□ABCD的对角线AC、BD交于O,且∠1=∠1.
    (1)求证:□ABCD是菱形;
    (1)F为AD上一点,连结BF交AC于E,且AE=AF.求证:AO=(AF+AB).
    25、(10分)如图,在平行四边形ABCD中,DE,BF分别是∠ADC,∠ABC的角平分线.
    求证:四边形DEBF是平行四边形.
    26、(12分)判断代数式的值能否等于-1?并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:设多边形的边数为n,则=135,解得:n=8
    考点:多边形的内角.
    2、B
    【解析】
    根据中心对称图形的概念解答即可.
    【详解】
    A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
    故选B.
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、D
    【解析】
    解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.
    4、C
    【解析】
    判断是否为同类二次根式必须先化为最简二次根式,若化为最简二次根式后,被开方数相同则为同类二次根式.
    【详解】
    解:A、,与不是同类二次根式;
    B、,与不是同类二次根式;
    C、,与是同类二次根式;
    D、,与不是同类二次根式;
    故选C.
    主要考查如何判断同类二次根式,需注意的是必需先化为最简二次根式再进行判断.
    5、B
    【解析】
    由旋转的性质,得
    BP′=BP=3,∠PBP′=∠ABC=90°.
    在Rt△PBP′中,由勾股定理,得
    PP′=,
    故选B.
    6、B
    【解析】
    根据函数的图象得出两函数的交点坐标,再根据图象即可得出答案.
    【详解】
    ∵根据图象可知:两函数的交点坐标为(1,-2),
    ∴关于x的不等式k1x+b>k2x+c的解集是x>1,
    故选B.
    本题考查了一次函数与一元一次不等式的性质,能根据函数的图象得出两函数的交点坐标是解此题的关键.
    7、C
    【解析】
    根据矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半,由此即可解答.
    【详解】
    根据矩形的对角线相等且互相平分,可得:平行四边形ABC1O1底边AB上的高为:BC;平行四边形ABC2O2底边AB上的高为:×BC= ()2BC;
    ∵S矩形ABCD=AB•BC=5,
    ∴平行四边形ABC1O1的面积为:×5;
    ∴平行四边形ABC2O2的面积为:××5=()2×5;
    由此可得:平行四边形的面积为()n×5.
    故选C.
    本题考查了矩形对角线相等且互相平分的性质以及平行四边形的性质,探索并发现规律是解题的关键.
    8、C
    【解析】
    试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(2n-1,2n-1)
    【解析】
    首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后由待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
    【详解】
    解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
    ∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
    ∴A1的坐标是(0,1),A2的坐标是:(1,2),
    ∴,
    解得:,
    ∴直线A1A2的解析式是:y=x+1.
    ∵点B2的坐标为(3,2),
    ∴点A3的坐标为(3,4),
    ∴点B3的坐标为(7,4),
    ∴Bn的横坐标是:2n-1,纵坐标是:2n-1.
    ∴Bn的坐标是(2n-1,2n-1).
    故答案为: (2n-1,2n-1).
    此题考查了待定系数法求一次函数的解析式以及正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想与方程思想的应用.
    10、十
    【解析】
    利用多边形的内角和定理:n边形的内角和为 便可得.
    【详解】
    ∵n边形的内角和为
    ∴,.
    故答案为:十边形.
    本题考查多边形的内角和公式,掌握n边形内角和定理为本题的关键.
    11、(3,0)
    【解析】
    y=0,即可求出x的值,即可求解.
    【详解】
    解:当y=0时,有﹣2x+6=0,
    解得:x=3,
    ∴一次函数y=﹣2x+6的图象与x轴的交点坐标是(3,0).
    故答案为:(3,0).
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
    12、
    【解析】
    连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4-x,在△ACE中利用勾股定理可得x的长,即得CE的长.
    【详解】
    解:连接AE,
    ∵DE为AB的垂直平分线,
    ∴AE=BE,
    ∵在△ABC中,∠ACB=90°,AC=3,AB=5,
    由勾股定理得BC=4,
    设CE的长为x,则BE=AE=4-x,在Rt△ACE中,
    由勾股定理得:x2+32=(4-x)2,
    解得:x=,
    故答案为:.
    本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.
    13、乙
    【解析】
    根据方差的性质即可求解.
    【详解】
    ∵,,
    则>,∴乙班学生的成绩比较稳定.
    故填乙
    此题主要考查方差的性质,解题的关键是熟知数据的稳定性.
    三、解答题(本大题共5个小题,共48分)
    14、且.
    【解析】
    先根据分式方程的解法求解方程,再根据分式方程解的情况分类讨论求m的取值,
    再解不等式组,根据不等式组的解集和分式方程解的关系即可求解.
    【详解】
    方程两边同乘,得,,解得,
    当时,,,
    当时,,,
    故当或时有,
    方程的解为,其中且,
    解不等式组得解集,
    由题意得且,解得且,
    的取值范围是且.
    本题主要考查解含参数的分式方程和解不等式组,解决本题的关键是要熟练掌握解含参数的分式方程.
    15、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.
    【解析】
    (1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
    (2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.
    (3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
    【详解】
    (1)∵∠ACB=90°,AC=8,BC=1,
    ∴AB=,
    ∵S△ABC=AC•BC=AB•CD,
    ∴AC•BC=AB•CD,即:8×1=10×CD,
    ∴CD=;
    (2)在Rt△ADC中,AD=,BD=AB-AD=10-=,
    当点N在线段CD上时,如图1所示:
    ∵矩形PQMN,PQ总保持与AC垂直,
    ∴PN∥AC,
    ∴∠NPD=∠CAD,
    ∵∠PDN=∠ADC,
    ∴△PDN∽△ADC,
    ∴,即:,
    解得:PD=,
    ∴t=AD-PD=,
    当点Q在线段CD上时,如图2所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△DPQ∽△DBC,
    ∴,即:,
    解得:DP= ,
    ∴t=AD+DP=,
    ∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;
    (3)当Q在AC上时,如图3所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△APQ∽△ABC,
    ∴,即:,
    解得:AP= ,
    当0<t<时,重叠部分是矩形PHYN,如图4所示:
    ∵PQ∥BC,
    ∴△APH∽△ABC,
    ∴,即:,
    ∴PH=,
    ∴S=PH•PN=;
    当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.
    当<t≤时,如图5中重叠部分是五边形PQMJI,
    S=S矩形PNMQ-S△JIN=2- •(t-)[1-(-t)•]=-t2+t-.
    【点评】
    本题属于四边形综合题,考查了解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
    16、(1)见解析;(2)1;(3)△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
    【解析】
    (1)根据等腰三角形两个底角相等可以进一步证明∠A=2∠CBD,
    (2) 根据题意描述,可以确定AB=5,AB+BC=8,再通过作DE⊥AB于来构造直角三角形可以求出CD长度.
    (3) 根据题目描述分情况来讨论哪个点为等腰三角形顶点,进而列方程进行求出P点位置情况.
    【详解】
    (1)证明:∵AB∥CD,BC⊥AB,AB=AD,
    ∴∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,
    ∴∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,
    ∴∠A=2∠CBD;
    (2)解:由图(b)得:AB=5,AB+BC=8,
    ∴BC=3,作DE⊥AB于E,如图所示:
    则DE=BC=3,CD=BE,
    ∵AD=AB=5,
    ∴AE==4,
    ∴CD=BE=AB﹣AE=1;
    (3)解:可能;理由如下:
    分情况讨论:
    ①点P在AB边上时,
    当PD=PB时,P与A重合,x=0;
    当DP=DB时,BP=2BE=2,
    ∴AP=3,
    ∴x=3;
    当BP=BD==时,AP=5﹣,
    即x=5﹣;
    ②点P在BC上时,存在PD=PB,
    此时,x=5+=;
    ③点P在AD上时,
    当BP=BD=时,x=5+3+1+2=10;
    当DP=DB=时,x=5+3+1+=9+;
    综上所述:△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
    本题主要考察学生对等腰三角形的性质、数形结合能力、还有分类讨论问题的能力,掌握数性结合运用是解决此题的关键.
    17、(1) 84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.
    【解析】
    (1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;
    (2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;
    (3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.
    【详解】
    (1)把这组数据从小到大排列为,80,84,84,85,90,92,
    最中间两个数的平均数是(84+85)÷2=84.5(分),
    则这6名选手笔试成绩的中位数是84.5,
    84出现了2次,出现的次数最多,
    则这6名选手笔试成绩的众数是84;
    故答案为:84.5,84;
    (2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:

    解得:,
    故笔试成绩和面试成绩各占的百分比是40%,60%;
    (3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),
    3号选手的综合成绩是84×0.4+86×0.6=85.2(分),
    4号选手的综合成绩是90×0.4+90×0.6=90(分),
    5号选手的综合成绩是84×0.4+80×0.6=81.6(分),
    6号选手的综合成绩是80×0.4+85×0.6=83(分),
    则综合成绩排序前两名人选是4号和2号
    此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.
    18、(1)y=-10x2+100x+6000(0≤x≤30);(2) 单价定为5元时,每月销售商品的利润最大,最大利润为6250元.
    【解析】
    试题分析:(1)单价上涨x(元),由单价每上涨1元,该商品每月的销量就减少10件得到销售量为(300-10x)件,根据利润等于销售价减成本得到每件的利润为(80-60+x),因此每月销售该商品的利润y等于月销售量×每件的利润;
    (2)把(1)得到的函数关系式进行配方得到y=-10(x-5)2+6250,然后根据二次函数的最值问题易得到单价定为多少元时,每月销售该商品的利润最大.
    试题解析:(1)y=(80-60+x)(300-10x)
    =-10x2+100x+6000(0≤x≤30);
    (2)y=-10x2+100x+6000
    =-10(x-5)2+6250
    ∵a=-10<0,
    ∴当x=5时,y有最大值,其最大值为6250,
    即:单价定为5元时,每月销售商品的利润最大,最大利润为6250元.
    考点:二次函数的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、且
    【解析】
    当x≠﹣1时,解出x含a的表达式,令其小于零且不等于-1,直接解出即可.
    【详解】
    当x≠﹣1时,1x-a=0,x=<0,解得a<0,
    且,解得a≠﹣1.
    综上所述且.
    故答案为:且.
    本题考查解分式方程和解不等式,关键在于牢记分式有意义的条件,熟练掌握解方程的步骤.
    20、y=2x-1
    【解析】
    根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
    【详解】
    解:设平移后直线的解析式为y=2x+b.
    把(5,1)代入直线解析式得1=2×5+b,
    解得 b=-1.
    所以平移后直线的解析式为y=2x-1.
    故答案为:y=2x-1.
    本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
    21、12-
    【解析】
    先估算的取值范围,再求出5+与5-的取值范围,从而求出a,b的值.
    【详解】
    解:∵3<<4,
    ∴8<5+<9,1<5-<2,
    ∴5+的整数部分为a=8,5-的小数部分为b=5--1=4-,
    ∴a+b=8+4-=12-,
    故答案为12-.
    本题主要考查了无理数的估算,解题关键是确定无理数的范围.
    22、
    【解析】
    由抛物线顶点在x轴上,可得函数可以化成,即可化成完全平方公式,可得出,原函数可化为,将带入可解得的值用m表示,再将,且转化成PQ的长度比与之间的距离大可得出只含有m的不等式即可求解.
    【详解】
    解:∵抛物线顶点在x轴上,
    ∴函数可化为的形式,即可化成完全平方公式
    ∴可得:,
    ∴;
    令,可得,由题可知,
    解得:;
    ∴线段PQ的长度为,
    ∵,且,
    ∴,
    ∴,
    解得:;
    故答案为
    本题考查特殊二次函数解析式的特点,可以利用公式法求得a、b之间的关系,也可以利用顶点在x轴上的函数解析式的特点来得出a、b之间的关系;最后利用PQ的长度大于与之间的距离求解不等式,而不是简单的解不等式,这个是解题关键.
    23、10
    【解析】
    利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
    【详解】
    ∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,
    ∴=0.4,
    解得:n=10.
    故答案为:10.
    此题考查利用频率估计概率,掌握运算法则是解题关键
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(1)证明见解析.
    【解析】试题分析:(1)利用平行线的性质以及等角对等边即可证得AB=BC,则依据菱形的定义即可判断;
    (1)首先证明△BCE是等腰三角形,然后依据平行四边形的对角线互相平分即可证得.
    试题解析:(1)∵▱ABCD中,AD∥BC,
    ∴∠1=∠ACB,
    又∵∠1=∠1,
    ∴∠1=∠ACB
    ∴AB=BC,
    ∴▱ABCD是菱形;
    (1)∵▱ABCD中,AD∥BC,
    ∴∠AFE=∠EBC,
    又∵AF=AE,
    ∴∠AFE=∠AEF=∠BEC,
    ∴∠EBC=∠BEC,
    ∴BC=CE,
    ∴AC=AE+CE=AF+BC=1OA,
    ∴OA=(AF+BC),
    又∵AB=BC,
    ∴OA=(AF+AB).
    25、见解析.
    【解析】
    根据题意利用平行四边形的性质求出∠ABF=∠AED,即DE∥BF,即可解答
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠ADC=∠ABC.
    又∵DE,BF分别是∠ADC,∠ABC的平分线,
    ∴∠ABF=∠CDE.
    又∵∠CDE=∠AED,
    ∴∠ABF=∠AED,
    ∴DE∥BF,
    ∵DE∥BF,DF∥BE,
    ∴四边形DEBF是平行四边形.
    此题考查平行四边形的性质和判定,利用好角平分线的性质是解题关键
    26、不能,理由见解析
    【解析】
    先将原代数式化简,再令化简后的结果等于-1,解出a的值,由结合分式存在的意义可以得出结论.
    【详解】
    原式= .
    当 =−1时,解得:a=0,
    ∵(a+1)(a−1)a≠0,即a≠±1,a≠0,
    ∴代数式的值不能等于−1.
    此题考查分式的化简求值,解题关键在于掌握运算法则
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年陕西省西安市师大附中九上数学开学考试模拟试题【含答案】: 这是一份2024-2025学年陕西省西安市师大附中九上数学开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省西安市陕西师大附中数学九年级第一学期开学联考模拟试题【含答案】: 这是一份2024-2025学年陕西省西安市陕西师大附中数学九年级第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年陕西省西安市碑林区西工大附中中考第一次模拟数学试题: 这是一份2024年陕西省西安市碑林区西工大附中中考第一次模拟数学试题,共6页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map