终身会员
搜索
    上传资料 赚现金

    2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】第1页
    2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】第2页
    2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】

    展开

    这是一份2024-2025学年陕西省咸阳市秦岭中学九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列图形中,是轴对称图形,但不是中心对称图形的是( )
    A.B.C.D.
    2、(4分)下列说法正确的是( )
    A.明天会下雨是必然事件
    B.不可能事件发生的概率是0
    C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下
    D.投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次
    3、(4分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
    A.2、40 B.42、38 C.40、42 D.42、40
    4、(4分)如图,是上一点,交于点,,,若,,则的长是( )
    A.0.5B.1C.1.5D.2
    5、(4分)不等式组的解集是( )
    A.x>-2B.x<1
    C.-1<x<2D.-2<x<1
    6、(4分)四边形ABCD中,AB∥CD,要使ABCD是平行四边形,需要补充的一个条件( )
    A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠ABC=∠BCD
    7、(4分)下列各点中,在函数 y=2x-5 图象上的点是( )
    A.(0,0)B.(,-4)C.(3,-1)D.(-5,0)
    8、(4分)当a<0,b<0时,-a+2-b可变形为( )
    A.B.-C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)图1是一个地铁站人口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为______
    10、(4分)如图,在平面直角坐标系中,长方形的顶点在坐标原点,顶点分别在轴,轴的正半轴上,,为边的中点,是边上的一个动点,当的周长最小时,点的坐标为_________.
    11、(4分)当x___________时,是二次根式.
    12、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.
    13、(4分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩________分.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.
    (1)求证:四边形ABCD是菱形;
    (2)若AB=5,AC=6,求AE,BF之间的距离.
    15、(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
    已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
    (1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
    (2)如果先进行精加工,然后进行粗加工.
    ①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
    ②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
    16、(8分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
    (1)求两队单独完成此项工程各需多少天;
    (2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
    按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元.
    17、(10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.
    18、(10分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AC边上的个动点,点D从点A出发,沿边AC向C运动,当运动到点C时停止,设点D运动时间为t秒,点D运动的速度为每秒1个单位长度的.
    (1)当t=2时,求CD的长;
    (2)求当t为何值时,线段BD最短?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示,将直角三角形, ,,沿方向平移得直角三角形,,阴影部分面积为_____________.
    20、(4分)已知方程组,则x+y的值是____.
    21、(4分)如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
    22、(4分)如图所示,数轴上点A所表示的数为____.
    23、(4分)已知在正方形中,,则正方形的面积为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:等腰三角形的一个角,求其余两角与的度数.
    25、(10分)百货商店销售某种冰箱,每台进价2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;每台售价每降低10元时,平均每天能多售出1台.(销售利润=销售价-进价)
    (1)如果设每台冰箱降价x元,那么每台冰箱的销售利润为______元,平均每天可销售冰箱______台;(用含x的代数式表示)
    (2)商店想要使这种冰箱的销售利润平均每天达到5600元,且尽可能地清空冰箱库存,每台冰箱的定价应为多少元?
    26、(12分)某校学生会干部对校学生会倡导的“牵手特殊教育”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).己知A、B两组捐款人数的比为1: 5.
    请结合以上信息解答下列问题.
    (1)a= ,本次调查样本的容量是 ;
    (2)先求出C组的人数,再补全“捐款人数分组统计图1”
    (3)根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在20至40元之间.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据轴对称图形和中心对称图形的概念即可逐一判断.
    【详解】
    解:A、是轴对称图形,也是中兴对称图形,故A不符合题意;
    B、是轴对称图形,但不是中兴对称图形,故B符合题意;
    C、是轴对称图形,也是中兴对称图形,故C不符合题意;
    D、是轴对称图形,也是中兴对称图形,故D不符合题意;
    故选:B.
    本题考查了轴对称图形和中心对称图形的识别,解题的关键是熟知轴对称图形和中兴对称图形的概念.
    2、B
    【解析】
    根据确定事件,不确定事件的定义;随机事件概率的意义;找到正确选项即可.
    【详解】
    A.每天可能下雨,也可能不下雨,是不确定事件,故该选项不符合题意,
    B.不可能事件发生的概率是0,正确,故该选项符合题意,
    C.在水平的桌面上任意抛掷一枚图钉,一定针尖向上,故该选项不符合题意,
    D.投掷一枚之地近月的硬币1000次,正面朝下的次数不一定是500次,故该选项不符合题意,
    故选B.
    本题主要考查了事件的可能性的大小,掌握事件的类型及发生的概率是解题的关键.
    3、D
    【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
    【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
    将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
    故选D.
    【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
    4、B
    【解析】
    根据平行线的性质,得出,,根据全等三角形的判定,得出,根据全等三角形的性质,得出,根据,,即可求线段的长.
    【详解】
    ∵,
    ∴,,
    在和中,
    ∴,
    ∴,
    ∵,
    ∴.
    故选:B.
    本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定是解此题的关键.
    5、D
    【解析】
    分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
    详解:,
    解①得:x>﹣2,
    解②得:x<1,
    则不等式组的解集是:﹣2<x<1.
    故选D.
    点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    6、B
    【解析】
    根据平行四边形的判定方法一一判断即可.
    【详解】
    ∵AB∥CD,∴只要满足AB=CD,可得四边形ABCD是平行四边形,故选:B.
    考查平行四边形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.
    7、B
    【解析】
    只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.
    【详解】
    解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;
    B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;
    C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;
    D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.
    故选:B.
    本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.
    8、C
    【解析】
    试题解析:∵a<1,b<1,
    ∴-a>1,-b>1.
    ∴-a+2-b =()2+2+()2,
    =()2.
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,根据含30度角的直角三角形的性质即可求出AE与BF的长度,然后求出EF的长度即可得出答案.
    【详解】
    解:过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,
    ∵AC=56,∠PCA=30°,

    由对称性可知:BF=AE,
    ∴通过闸机的物体最大宽度为2AE+AB=56+10=66;
    故答案为:66cm.
    本题考查解直角三角形,解题的关键是熟练运用含30度的直角直角三角形的性质,本题属于基础题型.
    10、 (1,0)
    【解析】
    作点D关于x轴的对称点D′,连接CD′与x轴交于点E,用待定系数法,求出直线CD′的解析式,然后求得与x轴的交点坐标即可.
    【详解】
    作点D关于x轴的对称点D′,连接CD′与x轴交于点E,
    ∵OB=4,OA=3,D是OB的中点,
    ∴OD=2,则D的坐标是(0,2),C的坐标是(3,4),
    ∴D′的坐标是(0,-2),
    设直线CD′的解析式是:y=kx+b(k≠0),

    解得:,
    则直线的解析式是:y=2x-2,
    在解析式中,令y=0,得到2x-2=0,
    解得x=1,
    则E的坐标为(1,0),
    故答案为:(1,0).
    本题考查了路线最短问题,以及待定系数法求一次函数的解析式,正确作出E的位置是解题的关键.
    11、≤;
    【解析】
    因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.
    【详解】
    因为是二次根式,
    所以,
    所以,
    故答案为.
    本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.
    12、
    【解析】
    根据菱形的性质及勾股定理即可求得菱形的边长.
    【详解】
    解:因为菱形的对角线互相垂直平分,
    所以对角线的一半为2和3,
    根据勾股定理可得菱形的边长为
    故答案为:.
    此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.
    13、1
    【解析】
    根据题意得:
    85×+80×+90×=17+24+45=1(分),
    答:小王的成绩是1分.
    故答案为1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2).
    【解析】
    试题分析:(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案;
    (2)先求出BD的长,求出菱形的面积,即可求出答案.
    试题解析:(1)∵AE∥BF,
    ∴∠ADB=∠DBC,∠DAC=∠BCA,
    ∵AC、BD分别是∠BAD、∠ABC的平分线,
    ∴∠DAC=∠BAC,∠ABD=∠DBC,
    ∴∠BAC=∠ACB,∠ABD=∠ADB,
    ∴AB=BC,AB=AD
    ∴AD=BC,
    ∵AD∥BC,
    ∴四边形ABCD是平行四边形,
    ∵AD=AB,
    ∴四边形ABCD是菱形;
    (2)过A作AM⊥BC于M,则AM的长是AE,BF之间的距离,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=OC=AC=×6=3,
    ∵AB=5,
    ∴在Rt△AOB中,由勾股定理得:BO=4,
    ∴BD=2BO=8,
    ∴菱形ABCD的面积为×AC×BD=×6×8=24,
    ∵四边形ABCD是菱形,
    ∴BC=AB=5,
    ∴5×AM=24,
    ∴AM=,
    即AE,BF之间的距离是.
    考点:1.菱形的判定和性质,2.平行四边形的判定,3.平行线的性质,4.等腰三角形的判定
    15、(1)应安排4天进行精加工,8天进行粗加工
    (2)①=
    ②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
    【解析】
    解:(1)设应安排天进行精加工,天进行粗加工,
    根据题意得
    解得
    答:应安排4天进行精加工,8天进行粗加工.
    (2)①精加工吨,则粗加工()吨,根据题意得
    =
    ②要求在不超过10天的时间内将所有蔬菜加工完,
    解得
    又在一次函数中,,
    随的增大而增大,
    当时,
    精加工天数为=1,
    粗加工天数为
    安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
    16、(1)甲队单独完成此项工程需15天,乙队单独完成此项工程需10天;(2)甲队所得报酬8000元,乙队所得报酬12000元.
    【解析】
    (1)求工效,时间明显,一定是根据工作总量来列等量关系的.等量关系为:甲6天的工作总量+乙6天的工作总量=1;
    (2)让20000×各自的工作量即可.
    【详解】
    解:(1)设甲队单独完成此项工程需x天,
    由题意得
    解之得x=15
    经检验,x=15是原方程的解.
    答:甲队单独完成此项工程需15天,
    乙队单独完成此项工程需15×=10(天)
    (2)甲队所得报酬:20000××6=8000(元)
    乙队所得报酬:20000××6=12000(元)
    本题主要考查了分式方程的应用.
    17、见解析
    【解析】
    首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.
    【详解】
    解:证明:连接BD,交AC于点O,如图所示,
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵AE=CF,
    ∴OA﹣AE=OC﹣CF,
    即OE=OF,
    ∴四边形DEBF是平行四边形.
    本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
    18、(1)8;(2)
    【解析】
    (1)根据勾股定理即可得到结论;
    (2)根据相似三角形的判定和性质定理即可得到结论.
    【详解】
    (1)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,
    ∴AC= =10,
    当t=2时,AD=2,
    ∴CD=8;
    (2)当BD⊥AC时,BD最短,
    ∵BD⊥AC,
    ∴∠ADB=∠ABC=90°,
    ∵∠A=∠A,
    ∴△ABD∽△ACB,
    ∴,即:,
    ∴AD=,
    ∴t=,
    ∴当t为时,线段BD最短.
    本题主要考查勾股定理,相似三角形的性质和判定定理,掌握“母子相似”模型,是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.
    【详解】
    ∵△ACB平移得到△DEF,
    ∴CE=BF=2,DE=AC=6,
    ∴GE=DE-DG=6-3=3,
    由平移的性质,S△ABC=S△DEF,
    ∴阴影部分的面积=S梯形ACEG=(GE+AC)•CE=(3+6)×2=1.
    故答案为:1.
    本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.
    20、﹣1.
    【解析】
    根据题意,①-②即可得到关于x+y的值
    【详解】

    ①﹣②得到:﹣3x﹣3y=6,
    ∴x+y=﹣1,
    故答案为﹣1.
    此题考查解二元一次方程组,难度不大
    21、50°
    【解析】
    由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.
    解:∵CC/∥AB,
    ∴∠C/CA=∠CAB=65°,
    ∵由旋转的性质可知:AC=AC/,
    ∴∠ACC/=∠AC/C=65°.
    ∴∠CAC/=180°-65°-65°=50°.
    ∴∠BAB/=50°.
    22、
    【解析】
    首先计算出直角三角形斜边的长,然后再确定点A所表示的数.
    【详解】
    ∵,∴点A所表示的数1.
    故答案为:.
    本题考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.
    23、
    【解析】
    正方形是特殊的菱形,故根据菱形的面积计算公式即可求正方形ABCD的面积,即可解题.
    【详解】
    如图,
    ∵AC的长为4,
    ∴正方形ABCD的面积为×42=1,
    故答案为:1.
    本题考查了正方形面积的计算,掌握正方形的面积公式是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    根据∠α的情况进行分类讨论求解即可.
    【详解】
    当时,由三角形内角和,是顶角,所以
    当时,①是顶角,所以
    ②是底角,、或、
    本题考查了等腰三角形的性质;等腰三角形中,已知没有明确具体名称时要分类讨论,这是解答本题的关键.
    25、(1),;(2) 应定价2700元.
    【解析】
    (1)销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”;
    (2)根据每台的盈利×销售的件数=5600元,即可列方程求解.
    【详解】
    解:(1)每台冰箱的销售利润为元,平均每天可销售冰箱台;
    (2) 依题意,可列方程:

    解方程,得x1 =120 ,x2 =200
    因为要尽可能地清空冰箱库存,所以x=120舍去
    2900-200=2700元
    答:应定价2700元.
    点睛:本题考查了一元二次方程的应用,关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
    26、(1)20,500;(2)C组的人数为200,图见解析;(3)3060人
    【解析】
    (1)根据A、B两组捐款人数的比为1: 5,即可计算出a的值和B所占的百分比,进而可计算的样本容量.
    (2)根据样本容量乘以百分数可得C组的人数,在补全条形图即可.
    (3)首先计算出20至40元之间的人数的百分比,再乘以样本容量,再乘以样本容量所占的比例.
    【详解】
    .解:(1)
    因为A和B所占的比例为:
    所以B占的比例为:24%
    样本容量=;
    (2),∴C组的人数为200,
    补全“捐款人数分组统计图1”如右图所示
    (3)(人)
    答:该校4500名学生中大约有3060人捐款在20至40元之间.
    本题主要考查数据统计的条形图有关计算,关键在于计算样本容量.
    题号





    总分
    得分
    销售方式
    粗加工后销售
    精加工后销售
    每吨获利(元)
    1000
    2000

    相关试卷

    2024-2025学年陕西省咸阳市百灵中学数学九上开学经典试题【含答案】:

    这是一份2024-2025学年陕西省咸阳市百灵中学数学九上开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】:

    这是一份2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】:

    这是一份2024-2025学年陕西省安康市汉滨区数学九上开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map