终身会员
搜索
    上传资料 赚现金
    2024-2025学年四川成都青羊区教科院附属实验学校高一新生入学分班质量检测数学试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年四川成都青羊区教科院附属实验学校高一新生入学分班质量检测数学试题【含答案】01
    2024-2025学年四川成都青羊区教科院附属实验学校高一新生入学分班质量检测数学试题【含答案】02
    2024-2025学年四川成都青羊区教科院附属实验学校高一新生入学分班质量检测数学试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年四川成都青羊区教科院附属实验学校高一新生入学分班质量检测数学试题【含答案】

    展开
    这是一份2024-2025学年四川成都青羊区教科院附属实验学校高一新生入学分班质量检测数学试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若a-b+c=0,则一元二次方程ax2+bx+c=0有一根是( )
    A.2 B.1 C.0 D.-1
    2、(4分)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )
    A.B.C.D.
    3、(4分)当分式有意义时,字母x应满足( )
    A.x≠1B.x=0C.x≠-1D.x≠3
    4、(4分)已知平行四边形,下列条件中,不能判定这个平行四边形为菱形的是( )
    A.B.C.平分D.
    5、(4分)把直线向下平移3个单位长度得到直线为( )
    A.B.C.D.
    6、(4分)在平行四边形中,若,则下列各式中,不能成立的是( )
    A.B.C.D.
    7、(4分)矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为( )
    A.56B.192
    C.20D.以上答案都不对
    8、(4分)下列计算正确的是( )
    A.B.2C.()2=2D.=3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.
    10、(4分)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
    11、(4分)已知:一次函数的图像在直角坐标系中如图所示,则______0(填“>”,“<”或“=”)
    12、(4分)Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.
    13、(4分)某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为分、分、分,则小明的数学期末总评成绩为________分.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在等腰梯形ABCD中,,,,.点Р从点B出发沿折线段以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点O向上作射线OKIBC,交折线段于点E.点P、O同时开始运动,为点Р与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒.
    (1)点P到达终点C时,求t的值,并指出此时BQ的长;
    (2)当点Р运动到AD上时,t为何值能使?
    (3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?
    (4)能为直角三角形时t的取值范围________.(直接写出结果)
    (注:备用图不够用可以另外画)

    15、(8分)市教育局为了解本市中学生参加志愿者活动情况,随机拍查了某区部分八年级学生一学年来参加志愿者活动的次数,并用得到的数据绘制了如下两幅不完整的统计图.
    (1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;
    (2)在这次抽样调查中,众数和中位数分别是多少?
    (3)如果该区共有八年级学生人,请你估计“活动次数不少于次”的学生人数大约多少人.
    16、(8分)(1)因式分解:x3﹣8x2+16x.
    (2)解方程:2﹣=.
    17、(10分) “2018年某明星演唱会”于6月3日在某市奥体中心举办.小明去离家300的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有30分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小明骑车的时间比跑步的时间少用了5分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
    (1)求小明跑步的平均速度;
    (2)如果小明在家取票和寻找“共享单车”共用了4分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
    18、(10分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
    (1)求证:BM=MN;
    (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
    20、(4分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.
    21、(4分)如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.
    22、(4分)若a2﹣5ab﹣b2=0,则的值为_____.
    23、(4分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形 ABCD中, AB16 , BC18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处.
    (I)若 AE0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;
    (II)若 AE3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;
    (III)若AE8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.

    25、(10分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.
    (1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.
    (2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.
    (3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)
    26、(12分)某校随机抽取本校部分同学,调查同学了解母亲生日日期的情况,分“知道、不知道、记不清”三种.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.
    请你要根据图中提供的信息,解答下列问题:
    (1)求本次被调查学生的人数,并补全条形统计图;
    (2)在图①中,求出“不知道”部分所对应的圆心角的度数;
    (3)若全校共有1440名学生,请你估计这所学校有多少名学生知道母亲的生日?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    把a-b+c = 0与ax²+bx+c = 0比较,可以发现把x = ﹣1代入方程ax2+bx+c = 0,即可出现a-b+c = 0,说明,一元二次方程ax2+bx+c = 0一定有一根﹣1.
    【详解】
    ∵把x = ﹣1代入方程ax²+bx+c = 0,可得a-b+c = 0,
    ∴一元二次方程ax²+bx+c = 0一定有一根﹣1.故选D.
    本题考查了方程解的定义,如果一个数是方程的解,则把方程中的x换成这个数,得到的等式仍成立,特别是对于一元二次方程,要能通过a、b、c的关系式看出ax²+bx+c = 0的根是什么.
    2、B
    【解析】
    ∵y轴表示当天爷爷离家的距离,X轴表示时间
    又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,
    ∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近
    又知去时是跑步,用时较短,回来是慢走,用时较多
    ∴选项B中的图形满足条件.
    故选B.
    3、A
    【解析】
    分式有意义,分母不为零.
    【详解】
    解:当,即时,分式有意义;
    故选:A.
    本题考查了分式有意义的条件.(1)若分式无意义,则分母为零;(2)若分式有意义,则分母不为零.
    4、A
    【解析】
    菱形的判定有以下三种:①一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.
    【详解】
    解:A、由平行四边形的性质可得AB=CD,所以由AB=CD不能判定平行四边形ABCD是菱形,故A选项符合题意;
    B、一组邻边相等的平行四边形是菱形,故B选项不符合题意.
    C、由一条对角线平分一角,可得出一组邻边相等,也能判定为菱形,故C选项不符合题意;
    D、对角线互相垂直的平行四边形是菱形,故D选项不符合题意;
    故选:A.
    本题考查菱形的判定方法,熟记相关判定即可正确解答.
    5、D
    【解析】
    根据直线平移的性质,即可得解.
    【详解】
    根据题意,得
    故答案为D.
    此题主要考查一次函数的平移,熟练掌握,即可解题.
    6、D
    【解析】
    由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角可以求出∠C,∠D和∠B与∠A是邻角故可求出∠D和∠B,由此可以分别求出它们的度数,然后可以判断了.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C,∠B=∠D,∠A+∠B=180°
    而∠A=50°,
    ∴∠C=∠A=50°,∠B=∠D =130°,
    ∴D选项错误,
    故选D.
    本题考查平行四边形的性质,平行四边形的对角相等,邻角互补;熟练运用这个性质求出其它三个角是解决本题的关键.
    7、B
    【解析】
    首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.
    【详解】
    解:∵矩形的两邻边之比为3:4,
    ∴设矩形的两邻边长分别为:3x,4x,
    ∵对角线长为20,
    ∴(3x)2+(4x)2=202,
    解得:x=4,
    ∴矩形的两邻边长分别为:12,16;
    ∴矩形的面积为:12×16=1.
    故选B.
    8、C
    【解析】
    利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.
    【详解】
    解:A、>3>,
    ∴选项A不正确;
    B、,
    ∴选项B不正确;
    C、()2=2,
    ∴选项C正确;
    D、=3,
    ∴选项D不正确.
    故选C.
    本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4或﹣1.
    【解析】
    根据题意画图如下:
    以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.
    10、2.1
    【解析】
    根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.
    【详解】
    连结AP,
    在△ABC中,AB=6,AC=8,BC=10,
    ∴∠BAC=90°,
    ∵PE⊥AB,PF⊥AC,
    ∴四边形AFPE是矩形,
    ∴EF=AP.
    ∵M是EF的中点,
    ∴AM=AP,
    根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,
    ∴当AP⊥BC时,△ABP∽△CAB,
    ∴AP:AC=AB:BC,
    ∴AP:8=6:10,
    ∴AP最短时,AP=1.8,
    ∴当AM最短时,AM=AP÷2=2.1.
    故答案为2.1
    解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.
    11、>
    【解析】
    根据图像与y轴的交点可知b<0,根据y随x的增大而减小可知k<0,从而根据乘法法则可知kb>0.
    【详解】
    ∵图像与y轴的交点在负半轴上,
    ∴b<0,
    ∵y随x的增大而减小,
    ∴k<0,
    ∴kb>0.
    故答案为>.
    本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.
    12、1
    【解析】
    根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.
    【详解】
    解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),
    ∴AB=2,
    ∴BC==4,
    ∴点C的坐标为(3,4),
    当y=4时,4=﹣x﹣3,得x=﹣7,
    ∴C′(﹣7,4),
    ∴CC′=10,
    ∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,
    故答案为:1.
    此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.
    13、1
    【解析】
    按统计图中各部分所占比例算出小明的期末数学总评成绩即可.
    【详解】
    解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=1(分).
    故答案为1.
    三、解答题(本大题共5个小题,共48分)
    14、 (2) 秒,;(2)详见解析;(3);(4)或.
    【解析】
    (2)把BA,AD,DC它们的和求出来再除以速度每秒5个单位就可以求出t的值,然后也可以求出BQ的长;
    (2)如图2,若PQ∥DC,又AD∥BC,则四边形PQCD为平行四边形,从而PD=QC,用t分别表示QC,BA,AP,然后就可以得出关于t的方程,解方程就可以求出t;
    (3)分情况讨论,当P在BA上运动时,E在CD上运动.0≤t≤20,QC的长度≤30,PE的长度>AD=75,QC(4)①当点P在BA(包括点A)上,即0②当点P、E都在AD(不包括点A但包括点D)上,即2025×3-30=45,
    可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.对于∠PQE,
    ∠PQE≤∠CQE,只有当点P与C重合,即t=35时,如图4,∠PQE=90°,△PQE为直角三角形.
    【详解】
    解:(2)t=(50+75+50)÷5=35(秒)时,点P到达终点C,
    此时,QC=35×3=205,
    ∴BQ的长为235−205=30.
    (2)如图2,若PQ∥DC,
    ∵AD∥BC,
    ∴四边形PQCD为平行四边形,
    ∴PD=QC,
    由QC=3t,BA+AP=5t
    得50+75−5t=3t,
    解得t=.
    ∴当t=时,PQ∥DC.
    (3)当P在BA上运动时,E在CD上运动.0⩽t⩽20,QC的长度⩽30,PE的长度>AD=75,QC当P点运动到AD上,E在AD上,且P在E的左侧时,P、Q、C. E为顶点的四边形是平行四边形,如图5,
    ∴PE=QC.
    如图2,作DH⊥BC于H,AG⊥BC于G,
    ∠AGB=∠DHC=90∘
    ∴四边形AGHD是矩形,
    ∴GH=AD=75.AG=DH.
    在△ABG和△DCH中,

    ∴△ABG≌△DCH,
    ∴BG=CH=(235−75)=30,
    ∴ED=3(t−20)
    ∵AP=5t−50,
    ∴PE=75−(5t−50)−3(t−20)=255−8t.
    ∵QC=3t,
    ∴255−8t=3t,
    t=.
    当P在E点的右侧且在AD上时,t⩽25,P、Q、C. E为直角梯形,
    当P在CD上,E在AD上QE与PC不平行,P、Q、C. E不可能为平行四边形,
    ∴t=;
    (4)①当点P在BA(包括点A)上,即0过点P作PG⊥BC于点G,则PG=PB⋅sinB=4t,
    又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形。
    ②当点P、E都在AD(不包括点A但包括点D)上,即20由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,
    即5t−50+3t−30≠75,解得t≠.③当点P在DC上(不包括点D但包括点C),
    即2525×3−30=45,可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角。由∠PEQ<∠DEQ,可知∠PEQ一定是锐角
    对于∠PQE,∠PQE⩽∠C, 只有当点P与C
    重合,即t=35时,如图4,∠PQE=90∘,△PQE为直角三角形。
    综上所述,当△PQE为直角三角形时,t的取值范围是0故答案为:0本题考查四边形综合题,熟练掌握四边形的基本性质及计算法则是解题关键.
    15、(1)1000,4.2;(2)众数是次,中位数是次;(3)1950
    【解析】
    (1)用350÷35%即可求出参加这次调查的学生总人数;再利用平均数即可求出这个区八年级学生平均每人一年来参加志愿者活动的次数;
    (2)根据中位数、众数的定义解答即可;
    (3)先求出这次调查样本中参加活动次数不少于次的概率,然后再乘以总体即可.
    【详解】
    解:(1)(人).
    次人数为(人);
    平均次数为:(次).
    (2)众数是次,中位数是次.
    (3)(人).
    本题考查的是条形统计图和扇形统计图的综合运用。读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    16、(1)x(x﹣4)1;(1)x=
    【解析】
    (1)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.
    (1)观察可得最简公分母是(x﹣1),方程两边乘最简公分母,把分式方程转化为整式方程,解方程并检验即得结果.
    【详解】
    解:(1)x3﹣8x1+16x
    =x(x1﹣8x+16)
    =x(x﹣4)1.
    (1)1﹣=,
    方程的两边同乘(x﹣1),得:1(x﹣1)﹣x=﹣1x,
    解得:x=.
    检验:把x=代入x﹣1≠2.
    故原方程的解为:x=.
    本题考查了多项式的因式分解和分式方程的解法,属于常考题型,熟练掌握上述基本知识是解题关键.
    17、(1)小明跑步的平均速度为20米/分钟.(2)小明能在演唱会开始前赶到奥体中心.
    【解析】
    (1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小明骑车的时间比跑步的时间少用了5分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;
    (2)根据时间=路程÷速度求出小明跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的4分钟即可求出小明赶回奥体中心所需时间,将其与30进行比较后即可得出结论.
    【详解】
    解:(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,
    根据题意得:-=5,
    解得:x=20,
    经检验,x=20是原分式方程的解.
    答:小明跑步的平均速度为20米/分钟.
    (2)小明跑步到家所需时间为300÷20=15(分钟),
    小明骑车所用时间为15-5=10(分钟),
    小明从开始跑步回家到赶回奥体中心所需时间为15+10+4=29(分钟),
    ∵29<30,
    ∴小明能在演唱会开始前赶到奥体中心.
    本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.
    18、(1)证明见解析;(2)
    【解析】
    (1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;
    (2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.
    【详解】
    (1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;
    (2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.
    考点:三角形的中位线定理,勾股定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    :把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
    【详解】
    解:∵

    ∵关于x的方程的解是负数


    解得
    本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
    20、1
    【解析】
    试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.
    5÷1%=50(人),
    50×30%=15(人),
    50﹣5﹣15﹣20=1(人).
    故答案为1.
    考点:条形统计图;扇形统计图.
    21、3.1
    【解析】
    根据三角形的中位线定理解答即可.
    【详解】
    解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,
    ∴.
    故答案为:3.1.
    本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.
    22、5
    【解析】
    由已知条件易得,,两者结合即可求得所求式子的值了.
    【详解】
    ∵,
    ∴,
    ∵,
    ∴.
    故答案为:5.
    “能由已知条件得到和”是解答本题的关键.
    23、2cm≤h≤3cm
    【解析】
    解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,
    则筷子露在外面部分的取值范围为:.
    故答案为:2cm≤h≤3cm
    本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.
    二、解答题(本大题共3个小题,共30分)
    24、 (I) ;(II) 16或10;(III) .
    【解析】
    (I)根据已知条件直接写出答案即可.
    (II)分两种情况: 或讨论即可.
    (III)根据已知条件直接写出答案即可.
    【详解】
    (I) ;
    (II)∵四边形是矩形,∴,.
    分两种情况讨论:
    (i)如图1,
    当时,即是以为腰的等腰三角形.
    (ii)如图2,当时,过点作∥,分别交与于点、.
    ∵四边形是矩形,
    ∴∥,.
    又∥,
    ∴四边形是平行四边形,又,
    ∴□是矩形,∴,,即,
    又,
    ∴,,
    ∵,∴,
    ∴,
    在中,由勾股定理得:,
    ∴,
    在中,由勾股定理得:,
    综上,的长为16或10.
    (III) . (或).
    本题主要考查了四边形的动点问题.
    25、(1);(2);(3)摸到的两球颜色相同的概率
    【解析】
    (1)直接利用概率公式计算;
    (2)利用完全列举法展示6种等可能的结果数,然后根据概率公式求解;
    (3)画树状图展示所有12种等可能的结果数,找出摸到两球颜色相同的结果数,然后根据概率公式求解.
    【详解】
    (1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是.
    (2)如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共6种等可能的结果数,其中摸到两球颜色相同的概率=.
    (3)画树状图为:
    共有12种等可能的结果数,其中摸到两球颜色相同的结果数为5,
    所以摸到两球颜色相同的概率.
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    26、(1)本次被调查学生的人数为90;补条形图见解析;(2)所对应的圆心角的度数为40°;(3)估计这所学校1440名学生中,知道母亲生日的人数为800人.
    【解析】
    (1)根据图象数据求总人数,即可求出“知道”的学生数,即可补全条形图;
    (2)根据记不清在扇形统计图中所占120°,在条形图中为30,得出总人数,进而求出“不知道”部分所对应的圆心角的度数;
    (3)用总人乘以知道母亲的生日的在样本中所占的百分比即可求得学生人数.
    【详解】
    (1)由“记不清”人数30,扇形统计图圆心角
    ∴本次被调查学生的人数为90
    ∴“知道”人数为
    补条形图
    (2)本次被调查“不知道”人数为10,
    所对应的圆心角的度数为
    (3)估计这所学校1440名学生中,
    知道母亲生日的人数为:(人)
    此题考查扇形统计图,用样本估计总体,条形统计图,解题关键在于看到图中数据
    题号





    总分
    得分
    相关试卷

    2024-2025学年四川成都盐道街中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川成都盐道街中学高一新生入学分班质量检测数学试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年四川成都西南交通大学附属中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川成都西南交通大学附属中学高一新生入学分班质量检测数学试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年四川成都石室外语学校高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川成都石室外语学校高一新生入学分班质量检测数学试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map