2024-2025学年四川省成都市师大一中学九上数学开学达标检测模拟试题【含答案】
展开
这是一份2024-2025学年四川省成都市师大一中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)的三边长分别为,下列条件:①;②;③;④其中能判断是直角三角形的个数有( )
A.个B.个C.个D.个
2、(4分)已知y与x成正比例,并且时,,那么y与x之间的函数关系式为( )
A.B.C.D.
3、(4分)如图,已知正方形 ABCD 的边长为 1,以顶点 A、B 为圆心,1 为半径的两弧交于点 E, 以顶点 C、D 为圆心,1 为半径的两弧交于点 F,则 EF 的长为 ( )
A.B.C.D.
4、(4分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A.B.C. D
5、(4分)如图,函数的图象与轴、轴分别交于点、,则的面积为( )
A.B.C.D.9
6、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,,则AB的长为( )
A.B.C.8D.
7、(4分)关于一组数据:1,5,6,3,5,下列说法错误的是( )
A.平均数是4B.众数是5C.中位数是6D.方差是3.2
8、(4分)点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(-3,4) C.(4,-3) D.(3,-4)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)人数相同的八年级甲,乙两班同学在同一次数学单元测试中,班级平均分和方差如下:,,则成绩较为稳定的班级是_______.
10、(4分)如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.
11、(4分)分式有意义的条件是______.
12、(4分)若,则等于______.
13、(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
(1)求的值;
(2)以AB为一边,在AB的左侧作正方形,求C点坐标;
(3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
15、(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
16、(8分)如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),
(1)请画出把△ABO向下平移5个单位后得到的△A1B1O1的图形;
(2)请画出将△ABO绕点O顺时针旋转90°后得到的△A2B2O2,并写出点A的对应点A2的坐标。
17、(10分)计算
18、(10分)如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,csA=.
(1)求线段CD的长;
(2)求sin∠DBE的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)两个相似三角形的最短边长分别为5cm和3cm,它们的周长之差为12cm,那么较大三角形的周长为_____cm.
20、(4分)若,则的取值范围为_____.
21、(4分)已知直线与直线平行且经过点,则__.
22、(4分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.
23、(4分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,的位置如图所示.点A,B,C的坐标分别为,,,根据下面要求完成解答.
(1)作关于点C成中心对称的;
(2)将向右平移4个单位,作出平移后的;
(3)在x轴上求作一点P,使的值最小,直接写出点P的坐标.
25、(10分)如图,是平行四边形的对角线,分别为边和边延长线上的点,连接交于点,且.
(1)求证:;
(2)若是等腰直角三角形,,是的中点,,连接,求的长.
26、(12分)某水果店经销进价分别为元/千克、元/千克的甲、乙两种水果,下表是近两天的销售情况:(进价、售价均保持不变,利润=售价-进价)
(1)求甲、乙两种水果的销售单价;
(2)若水果店准备用不多于元的资金再购进两种水果共千克,求最多能够进甲水果多少千克?
(3)在(2)的条件下,水果店销售完这千克水果能否实现利润为元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
判定直角三角形的方法有两个:一是有一个角是的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足,其中边c为斜边.
【详解】
解:由三角形内角和定理可知,
①中,,
,
,能判断是直角三角形,①正确,
③中, ,,不是直角三角形,③错误;
②中化简得 即 ,边b是斜边,由勾股逆定理是直角三角形,②正确;
④中经计算满足,其中边c为斜边,由勾股逆定理是直角三角形,④正确,所以能判断是直角三角形的个数有3个.
故答案为:C
本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.
2、A
【解析】
根据y与x成正比例,可设,用待定系数法求出k值.
【详解】
解:设,将,,代入得:
解得:k=8,所以y与x之间的函数关系式为.
故答案为:A
本题考查了正比例函数的解析式,根据正比例函数的定义设出其表达式是解题的关键.
3、D
【解析】
连接AE,BE,DF,CF,可证明三角形AEB是等边三角形,利用等边三角形的性质和勾股定理即可求出边AB上的高线,同理可求出CD边上的高线,进而求出EF的长.
【详解】
解:连接AE,BE,DF,CF.
∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,
∴AB=AE=BE,
∴△AEB是等边三角形,
∴边AB上的高线为EN=
,
延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,
则EM=1-EN=1-,
∴NF=EM=1-,
∴EF=1-EM-NF=-1.
故选:D.
本题考查正方形的性质和等边三角形的判定和性质以及勾股定理的运用,解题的关键是添加辅助线构造等边三角形,利用等边三角形的性质解答即可.
4、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
5、C
【解析】
根据函数的图象与轴、轴分别交于点、,求出A,B两点的坐标即可求解.
【详解】
∵函数的图象与轴、轴分别交于点、,
∴A(,0),(0,3)
∴的面积=OA×OB=××3=
故选C.
本题考查的是一次函数,熟练掌握一次函数的图像是解题的关键.
6、A
【解析】
由平行四边形ABCD中,OA=OB得到平行四边形ABCD是矩形,又,得到三角形AOD为等边三角形,再利用勾股定理得到AB的长.
【详解】
解:∵四边形ABCD为平行四边形,对角线AC、BD相交于点O,
∴OA=OC,OB=OD,
又∵OA=OB,
∴OA=OD=OB=OC,
∴平行四边形ABCD为矩形,∠DAB=90°,
而,
∴为等边三角形,
∴AD=OD=OA=OB=4,
在Rt中,AD=4,DB=2OD=8,
∴,
故选:A.
本题利用了矩形的判定和性质,等边三角形的判定及性质,勾股定理定理的应用求解.属于基础题.
7、C
【解析】
解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;
B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;
C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;
D.这组数据的方差是: [(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;
故选C.
考点:方差;算术平均数;中位数;众数.
8、D
【解析】解:∵点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标为3,纵坐标为﹣4,∴点P的坐标为(3,﹣4).故选D.
点睛:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、甲
【解析】
根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
∵,,
∴s甲2<s乙2,
∴甲班成绩较为稳定,
故答案为:甲.
本题考查方差的定义与意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
10、1
【解析】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.
【详解】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.
由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.
∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.
故答案为:1.
本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.
11、x≠1
【解析】
分析:根据分母不为零分式有意义,可得答案.
解:由有意义,得
x﹣1≠0,
解得x≠1
有意义的条件是x≠1,
故答案为:x≠1.
12、
【解析】
依据比例的基本性质,即可得到5a=7b,进而得出=.
【详解】
解:∵,
∴5a-5b=2b,
即5a=7b,
∴=,
故答案为:.
本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.
13、n2+2n
【解析】
试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.
解:第n个图形需要黑色棋子的个数是n2+2n.
故答案为:n2+2n.
三、解答题(本大题共5个小题,共48分)
14、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.
【解析】
(1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
【详解】
(1)∵一次函数的图像经过点A(-1,0),
∴-2+b=0,
解得:b=2,
∵点B(m,4)在一次函数y=2x+2上,
∴4=2m+2,
解得:m=1,
∵B(1,4)在反比例函数图象上,
∴k1=4.
(2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
∵A(-1,0),B(1,4),
∴AF=2,BF=4,
∴∠GCB+∠CBG=90°,
∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠ABF+∠CBG=90°,
∴∠GCB=∠ABF,
又∵BC=AB,∠AFB=∠CGB=90°,
∴△CBG≌△BAF,
∴BG=AF=2,CG=BF=4,
∴GF=6,
∵在AB的左侧作正方形ABCD,
∴C点坐标为(-3,6).
(3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
∵线段A1B1的中点为点E,
∴E(n,2),
∵点和点E同时落在反比例函数的图像上,
∴k2=2n=6(-3+n)
解得:n=.
本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.
15、57+12﹣
【解析】
试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.
试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)
=(12+12+45)﹣(6﹣2+2﹣5)
=(57+12﹣)(cm2).
考点:二次根式的应用
16、(1)见解析(2)(3,-1)
【解析】
(1)找到△ABO的三个顶点A、B、O、分别向下平移5个单位,找的它们的对应点A1、B1、O1,连接A1 B1、B1 O1、O1 A1,即可得到题目所要求图形△A1B1O1.
(2) 将△ABO绕点O顺时针旋转90°,则旋转中心O点的对应点O2的坐标仍为(0、0),OA可以看成它所在长方形的对角线,通过旋转长方形即可得到OA的对应线段O2A2,同理得出OB的对应线段O2B2,连接A2B2即可得到△A2B2O2.
【详解】
(1)
(2)由图可知,A2的坐标为(3,﹣1).
本题主要考查图形的平移与旋转,旋转是本题的难点.
17、
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
18、(1)CD=;
(2).
【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半,求出AB的长,即可求出CD的长;
(2)由于D为AB上的中点,求出AD=BD=CD=,设DE=x,EB=y,利用勾股定理即可求出x的值,据此解答即可.
【详解】
解:(1)∵在Rt△ABC中,AC=15,csA=,∴AB=25.
∵△ACB为直角三角形,D是边AB的中点,∴CD=.
(2)在Rt△ABC中,.
又AD=BD=CD=,设DE=x,EB=y,则
在Rt△BDE中,①,
在Rt△BCE中,②,
联立①②,解得x=.
∴.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据已知条件即可求出两个三角形的相似比为5:3,然后根据相似三角形的性质,可设大三角形的周长为5x,则小三角形的周长为3x,根据周长之差为12cm,列方程并解方程即可.
【详解】
解:∵两个相似三角形的最短边分别是5cm和3cm,
∴两个三角形的相似比为5:3,
设大三角形的周长为5x,则小三角形的周长为3x,
由题意得,5x﹣3x=12,
解得,x=6,
则5x=1,
故答案为:1.
此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.
20、
【解析】
根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.
【详解】
∵,
∴1−a≥0,
∴a≤1,
故答案是a≤1.
本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.
21、2
【解析】
由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(1,2)代入一次函数解析式可求出b的值.
【详解】
直线与直线平行,
,
,
把点代入得,解得;
,
故答案为:2
本题主要考查了两条直线相交或平行问题,待定系数法,解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.
22、﹣2≤m≤1
【解析】
由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.
【详解】
解:∵点A、B的坐标分别为(3,m)、(3,m+2),
∴线段AB∥y轴,
当直线y=1经过点A时,则m=1,
当直线y=1经过点B时,m+2=1,则m=﹣2;
∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
故答案为﹣2≤m≤1.
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
23、大于
【解析】
分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.
【详解】
∵共有球:2+3+5=10个,
∴P白球==,P红球==,
∵>,
∴摸出白球可能性大于摸出红球可能性.
故答案为:大于
本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)点P的坐标是
【解析】
(1)根据关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可;
(2)利用点平移的坐标变换规律写出点A、B、C的对应点A2、B2、C2的坐标,然后描点即可得到△A2B2C2;
(3)过点作关于x轴的对称点,连接,则的最小值为的长度,求出长度即可.
【详解】
解:(1),(2)如图:
(3)过点作关于x轴的对称点,连接
∴当的值最小时,,
此时,点P的坐标是:.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
25、(1)见解析;(2)
【解析】
(1)只要证明四边形ACHF是平行四边形,四边形ACGE是平行四边形,可得AC=HF=EG,即可推出EF=GH.
(2)首先证明∠BCF=90°,在Rt△BCF中,利用勾股定理即可解决问题;
【详解】
(1)证明:四边形是平行四边形,
.
四边形是平行四边形,四边形是平行四边形.
∴
∴
(2)解:连接,如解图.
,是的中点,.
,
.
,
.
本题考查平行四边形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
26、(1)甲、乙两种水果的销售单价分别为元、元;(2)最多购进甲水果千克时,采购资金不多于元;(3)在(2)的条件下水果店不能实现利润元的目标.
【解析】
(1)设甲、乙两种水果的销售单价分别为元、元,根据题意找到等量关系进行列二元一次方程组进行求解;
(2)设购进甲水果为千克,乙水果千克时采购资金不多于元,根据题意列出不等式即可求解;
(3)根据题意找到等量关系列出方程即可求解.
【详解】
解:(1)设甲、乙两种水果的销售单价分别为元、元,依题意得:
解得:
所以甲、乙两种水果的销售单价分别为元、元
(2)设购进甲水果为千克,乙水果千克时采购资金不多于元;
根据题意得:.
解得:
所以最多购进甲水果千克时,采购资金不多于元
(3)依题意得:
解得:
因为,
所以在(2)的条件下水果店不能实现利润元的目标.
此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系、不等关系进行列式求解.
题号
一
二
三
四
五
总分
得分
时间
甲水果销量
乙水果销量
销售收入
周五
千克
千克
元
周六
千克
千克
元
相关试卷
这是一份2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省遂宁市射洪中学九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省江油市六校九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。