终身会员
搜索
    上传资料 赚现金
    2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】01
    2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】02
    2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】

    展开
    这是一份2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)不等式的解集在数轴上表示为( )
    A.B.C.D.
    2、(4分)一个n边形从一个顶点出发可以画4条对角线,则它的内角和为( )
    A.360° B.540° C.720° D.900°
    3、(4分)如图,在平行四边形中,对角线、相交于,,、、分别是、、的中点,下列结论:
    ①;②;③;④平分;⑤四边形是菱形.
    其中正确的是( )
    A.①②③B.①③④C.①②⑤D.②③⑤
    4、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AD、AB边上的中点,连接EF,若EF=,OC=2,则菱形ABCD的面积为( )
    A.2B.4C.6D.8
    5、(4分)如图,中,是边上的高,若,,,则的长为( )
    A.0.72B.1.125C.2D.不能确定
    6、(4分)某学校初、高六个年级共有名学生,为了了解其视力情况,现采用抽样调查,如果按的比例抽样,则样本容量是( )
    A.B.C.D.
    7、(4分)已知,则的关系是( )
    A.B.C.D.
    8、(4分)某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中( )
    A.个体是每个学生
    B.样本是抽取的1200名学生的数学毕业成绩
    C.总体是40本试卷的数学毕业成绩
    D.样本是30名学生的数学毕业成绩
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)方程x5=81的解是_____.
    10、(4分)如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.
    11、(4分)分解因式:= .
    12、(4分)当二次根式的值最小时,=______.
    13、(4分)若1<x<2,则|x﹣3|+的值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图:,点在一条直线上,.求证:四边形是平行四边形.
    15、(8分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.
    (1)求证:四边形ABCD是菱形;
    (2)若求EF的长.
    16、(8分)已知:OC平分∠AOB,点P、Q都是OC上不同的点,PE⊥OA,PF⊥OB,垂足分别为E、F,连接EQ、FQ.求证:FQ=EQ
    17、(10分)树叶有关的问题
    如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。
    某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:
    表1 A树、B树、C树树叶的长宽比统计表
    表1 A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表
    A树、B树、C树树叶的长随变化的情况
    解决下列问题:
    (1)将表2补充完整;
    (2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”
    ②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”
    请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;
    (3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。
    18、(10分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.
    (1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;
    (2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.
    ①试判断四边形AEMF的形状,并说明理由;
    ②求折痕EF的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
    20、(4分)化简:=_________.
    21、(4分)的化简结果为________
    22、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
    23、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知火车站的坐标为(2,2),文化宫的坐标为(-1,3).
    (1)请你根据题目条件,画出平面直角坐标系;
    (2)写出体育场,市场,超市的坐标;
    (3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(-2,-2),(2,-2),请在图中标出A,B,C的位置.
    25、(10分)已知a、b、c满足(a﹣3)2|c﹣5|=1.
    求:(1)a、b、c的值;
    (2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
    26、(12分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.
    【详解】
    解不等式得:x⩽3,
    所以在数轴上表示为
    故选A.
    本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.
    2、D
    【解析】
    根据题意,由多边形的对角线性质,多边形内角和定理,分析可得答案.
    【详解】
    解:由多边形的对角线的条数公式得:n-3=4,得n=7,则其内角和为(n-2)×180°=(7-2)×180°=900°.
    故选D.
    本题考查了多边形的性质,从n边形的一个顶点出发,能引出(n﹣3)条对角线,一共有条对角线,经过多边形的一个顶点的所有对角线把多边形分成(n﹣3)个三角形.这些规律需要学生牢记.同时考查了多边形内角和定理.
    3、B
    【解析】
    由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.
    【详解】
    解:∵四边形ABCD是平行四边形
    ∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
    又∵BD=2AD,
    ∴OB=BC=OD=DA,且点E 是OC中点,
    ∴BE⊥AC,故①正确,
    ∵E、F分别是OC、OD的中点,
    ∴EF∥CD,EF=CD,
    ∵点G是Rt△ABE斜边AB上的中点,
    ∴GE=AB=AG=BG
    ∴EG=EF=AG=BG,无法证明GE=GF,故②错误,
    ∵BG=EF,AB∥CD∥EF
    ∴四边形BGFE是平行四边形,
    ∴GF=BE,且BG=EF,GE=GE,
    ∴△BGE≌△FEG(SSS)故③正确
    ∵EF∥CD∥AB,
    ∴∠BAC=∠ACD=∠AEF,
    ∵AG=GE,
    ∴∠GAE=∠AEG,
    ∴∠AEG=∠AEF,
    ∴AE平分∠GEF,故④正确,
    若四边形BEFG是菱形
    ∴BE=BG=AB,
    ∴∠BAC=30°
    与题意不符合,故⑤错误
    故选:B.
    本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
    4、B
    【解析】
    由三角形中位线定理可得BD=2EF=2,由菱形的性质可得AC⊥BD,AC=2AO=4,由菱形的面积公式可求解.
    【详解】
    ∵E、F分别是AD、AB边上的中点,
    ∴BD=2EF=2,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=CO=2,
    ∴AC=4,
    ∵菱形ABCD的面积=×AC×BD=4,
    故选B.
    本题考查了菱形的性质,三角形中位线定理,熟练运用菱形的面积公式是本题的关键.
    5、A
    【解析】
    先根据勾股定理的逆定理证明是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高.
    【详解】
    ,,,
    ,,


    是边上的高,


    .
    故选.
    该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题,解题的方法是运用勾股定理首先证明为直角三角形,解题的关键是灵活运用三角形的面积公式来解答.
    6、C
    【解析】
    总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
    【详解】
    解:10×10%=1,
    故样本容量是1.
    故选:C.
    考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    7、D
    【解析】
    将a进行分母有理化,比较a与b即可.
    【详解】
    ∵,,
    ∴.
    故选D.
    此题考查了分母有理化,分母有理化时正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.
    8、B
    【解析】
    A. 个体是每份试卷,
    C. 总体是一万名初中毕业生的数学毕业成绩;
    D. 样本是抽取的1200名学生的数学毕业成绩,
    故B正确
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    方程两边同时乘以1,可得x5=241=15.即可得出结论.
    【详解】
    ∵ x5=81,
    ∴x5=81×1=241=15,
    ∴x=1,
    故答案为:1.
    本题考查了高次方程的解法,能够把241写成15是解题的关键.
    10、或
    【解析】
    分两种情况:点F线段BC上时或在CB的延长线上时,根据正方形的性质及旋转的性质证明△ABF≌△ADE得到BF=DE,即可求出答案.
    【详解】
    ∵四边形ABCD是正方形,
    ∴∠A=∠B=90°,AB=AD=BC=CD=DE+CE=2+1=3,
    由旋转得AF=AE,
    ∴△ABF≌△ADE,
    ∴BF=DE=2,
    如图:当点F线段BC上时,CF=BC-BF=3-2=1,
    当点F在CB延长线上时,CF=BC+BF=3+2=5,
    故答案为:1或5.
    此题考查正方形的性质,全等三角形的判定及性质,旋转的性质,正确理解题意分情况解题是关键.
    11、.
    【解析】
    试题分析:原式=.故答案为.
    考点:因式分解-运用公式法.
    12、1
    【解析】
    直接利用二次根式的定义分析得出答案.
    【详解】
    ∵二次根式的值最小,
    ∴,解得:,
    故答案为:1.
    本题主要考查了二次根式的定义,正确把握定义是解题关键.
    13、1
    【解析】
    先根据1<x<1得出x﹣3<0,x﹣1>0,再去绝对值符号并把二次根式进行化简,合并同类项即可.
    【详解】
    解:∵1<x<1,
    ∴x﹣3<0,x﹣1>0,
    ∴原式=3﹣x+x﹣1=1.
    故答案为1.
    本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、详见解析
    【解析】
    根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.
    【详解】

    ∴AC+CF=EF+CF

    又,





    ∴四边形是平行四边形.
    本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.
    15、 (1)见解析;(2)
    【解析】
    (1)证明,得出,即可得出结论;
    (2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,

    ∵BD平分,



    是菱形;
    (2)解:∵四边形ABCD是菱形,


    ∴四边形ABDE是平行四边形,,



    是等腰直角三角形,

    本题考查了平行四边形的性质与判定、菱形的判定与性质、等腰三角形的判定以及等腰直角三角形的判定与性质;熟练掌握菱形判定与性质是解决问题的关键.
    16、证明见解析.
    【解析】
    分析:根据角平分线的性质得出PE=PF,结合OP=OP得出Rt△OPE和Rt△OPF全等,从而得出OC是线段EF的垂直平分线,从而得出答案.
    详解:证明:∵OC平分AOB,PE⊥OA,PF⊥OB, ∴ PE=PF,
    在Rt△OPE与Rt△OPF中, OP=OP,PE=PF,∴Rt△OPE≌Rt△OPF, ∴OE=OF,
    ∴OC是线段EF的垂直平分线, ∴FQ=EQ.
    点睛:本题主要考查的是角平分线的性质以及中垂线的性质,属于基础题型.根据题意得出OC是线段EF的中垂线是解决这个问题的关键.
    17、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;
    【解析】
    (1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;
    (2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;
    (3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.
    【详解】
    解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,
    ∴中位数为(2.0+2.2)÷2=2.1;
    ∵2.0出现了3次,出现的次数最多,
    ∴众数为2.0.
    (2)小张同学的说法是合理的,小李同学的说法是不合理的.
    理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;
    由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;
    (3)图1中,★表示这片树叶的数据,这片树叶来自B树;
    这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.

    本题主要考查了统计表的应用,平均数,中位数,众数,方差,用样本估计总体,熟练掌握中位数和众数的定义是解决此题的关键.
    18、(1)DE=1;(2)①四边形AEMF是菱形,证明见解析;②
    【解析】
    (1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC=1S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;
    (2)①根据四边相等的四边形是菱形证明即可;
    ②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.
    【详解】
    (1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
    ∴EF⊥AB,△AEF≌△DEF,
    ∴S△AEF=S△DEF,
    ∵S△ADE=S四边形BCDE,
    ∴S△ABC=4S△AEF,
    在Rt△ABC中,∵∠ACB=90,AB=10,BC=6,
    ∴AC=8,
    ∵∠EAF=∠BAC,
    ∴Rt△AEF∽Rt△ABC,
    ∴,即,
    ∴AE=1(负值舍去),
    由折叠知,DE=AE=1.
    (2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,
    ∴AE=EM,AF=MF,∠AFE=∠MFE,
    ∵ME∥AB,
    ∴∠AFE=∠FEM
    ∴∠MFE=∠FEM,
    ∴ME=MF,
    ∴AE=EM=MF=AF,
    ∴四边形AEMF为菱形.
    ②设AE=x,则EM=x,CE=8−x,
    ∵四边形AEMF为菱形,
    ∴EM∥AB,
    ∴△CME∽△CBA,
    ∴,
    即,
    解得x=,CM=,
    在Rt△ACM中,AM=,
    ∵S菱形AEMF=EF•AM=AE•CM,
    ∴EF=2×.
    本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=x-4
    【解析】
    首先设一次函数解析式为y=kx+b,根据y随x的增大而增大可选取k=1(k取任意一个正数即可),再把点(3,﹣1)代入可得﹣1=3+b,计算出b的值,进而可得解析式.
    【详解】
    ∵函数的值随自变量的增大而增大,
    ∴该一次函数的解析式为y=kx+b(k>0),
    ∴可选取k=1,
    再把点(3,﹣1)代入:﹣1=3+b,
    解得:b=-4,
    ∴一次函数解析式为y=x-4,
    故答案为:y=x-4(答案不唯一).
    本题考查一次函数的性质,掌握一次函数图象与系数的关系是解题的关键.
    20、
    【解析】
    根据三角形法则计算即可解决问题.
    【详解】
    解:原式=,
    = ,
    = ,
    =.
    故答案为.
    本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.
    21、
    【解析】
    根据二次根式的乘法,化简二次根式即可.
    【详解】
    解:,
    故答案为:.
    本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.
    22、y=2x+1
    【解析】
    分析:直接根据函数图象平移的法则进行解答即可.
    详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
    故答案为y=2x+1.
    点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    23、1
    【解析】
    D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.
    【详解】
    解:∵D,E分别是AC,BC的中点,
    ∴AB=2DE=1m.
    故答案为:1.
    本题考查了三角形的中位线定理,正确理解定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)图形见解析(2)体育场(-2,5)市场(6,5)超市(4,-1)(3)图形见解析
    【解析】
    试题分析:(1)根据已知点的坐标确定原点的坐标,确定出平面直角坐标系;
    (2)根据(1)的图形写出个点的坐标;
    (3)分别根据坐标写出位置名称.
    试题解析:(1)如图
    (2)体育场(-2,5)市场(6,5)超市(4,-1)
    (3)如图
    25、(1)a=3,b=4,c=5;(2)能构成三角形,且它的周长=2.
    【解析】
    (1)根据平方、算术平方根及绝对值的非负性即可得到答案;
    (2)根据勾股定理的逆定理即可证明三角形是直角三角形,再计算周长即可.
    【详解】
    (1)∵,
    又∵(a﹣3)2≥1,,|c﹣5|≥1,
    ∴a﹣3=1,b﹣4=1,c﹣5=1,
    ∴a=3,b=4,c=5;
    (2)∵32+42=52,
    ∴此△是直角三角形,
    ∴能构成三角形,且它的周长l=3+4+5=2.
    此题考查平方、算术平方根及绝对值的非负性,勾股定理的逆定理.
    26、证明见解析
    【解析】
    证明:连接BD,交AC于点O,根据四边形ABCD是平行四边形,得到OA=OC,OB=OD, 由此推出OE=OF,利用对角线互相平分的四边形是平行四边形即可得到结论.
    【详解】
    连接BD,交AC于点O,
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵AE=CF,
    ∴OA﹣AE=OC﹣CF,
    即OE=OF,
    ∵OE=OF,OB=OD
    ∴四边形DEBF是平行四边形.
    此题考查平行四边形的性质及判定,熟记判定定理及性质定理是解题的关键.
    题号





    总分
    得分
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    A树树叶的长宽比
    4.0
    4.9
    5.2
    4.1
    5.7
    8.5
    7.9
    6.3
    7.7
    7.9
    B树树叶的长宽比
    2.5
    2.4
    2.2
    2.3
    2.0
    1.9
    2.3
    2.0
    1.9
    2.0
    C树树叶的长宽比
    1.1
    1.2
    1.2
    0.9
    1.0
    1.0
    1.1
    0.9
    1.0
    1.3
    平均数
    中位数
    众数
    方差
    A树树叶的长宽比
    6.2
    6.0
    7.9
    2.5
    B树树叶的长宽比
    2.2
    0.38
    C树树叶的长宽比
    1.1
    1.1
    1.0
    0.02
    平均数
    中位数
    众数
    方差
    A树树叶的长宽比
    B树树叶的长宽比
    2.1
    2.0
    C树树叶的长宽比
    相关试卷

    2024-2025学年四川省成都高新东区九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年四川省成都高新东区九年级数学第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省枣庄市市中学区数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省枣庄市市中学区数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年南昌市重点中学九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年南昌市重点中学九年级数学第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map